zookeeper —— 分布式服务协调框架

zookeeper —— 分布式服务协调框架

  • 一、Zookeeper概述
    • 1、Zookeeper的基本概念
    • 2、Zookeeper的特点
    • 3、Zookeeper的数据结构
  • 二、Zookeeper的安装部署
    • 1、Zookeeper的下载
    • 2、Zookeeper的安装
      • 本地模式(单机模式standalone)安装部署
      • 分布式(集群模式cluster)安装部署
  • 三、zookeeper的内部实现原理
    • 1、选举机制
      • 1、Zookeeper第一次启动的选举机制
      • 2、zookeeper非第一次启动的选举机制
    • 2、Zookeeper写数据流程
      • 1、直接写Leader节点的流程
      • 2、直接写Follower的流程
      • 3、写数据流程的详细概述
  • 四、Zookeeper的客户端命令行操作
    • 1、命令行语法
    • 2、命令行基本操作
  • 五、高可用HA-Hadoop集群的搭建
    • 1、高可用HA概述
    • 2、HDFS-HA工作机制:通过双namenode消除单点故障
    • 3、HDFS-HA集群配置
  • 六、YARN-HA配置
    • 配置YARN-HA集群
  • 七、在高可用环境下如何用MR程序做单词计数

一、Zookeeper概述

1、Zookeeper的基本概念

  • Zookeeper是一个开源的分布式的,为分布式应用提供协调服务的Apache项目。
  • Zookeeper从设计模式角度来理解:是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper就将负责通知已经在Zookeeper上注册的那些观察者做出相应的反应,从而实现集群中类似Master/Slave管理模式
  • Zookeeper = 文件系统 + 通知机制

2、Zookeeper的特点

  • Zookeeper:一个领导者(leader),多个跟随者(follower)组成的集群。
  • Leader负责进行投票的发起和决议,更新系统状态
  • Follower用于接收客户请求并向客户端返回结果,在选举Leader过程中参与投票
  • 群中只要有半数以上节点存活,Zookeeper集群就能正常服务。
  • 全局数据一致:每个server保存一份相同的数据副本,client无论连接到哪个server,数据都是一致的。
  • 更新请求顺序进行,来自同一个client的更新请求按其发送顺序依次执行。
  • 数据更新原子性,一次数据更新要么成功,要么失败。
  • 实时性,在一定时间范围内,client能读到最新数据。

3、Zookeeper的数据结构

  • ZooKeeper数据模型的结构与Unix文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。
  • Zookeeper集群自身维护了一套数据结构。这个存储结构是一个树形结构,其上的每一个节点,我们称之为"znode",不同于树的节点,Znode的引用方式是路径引用,类似于文件路径:/znode1/leaf1
  • 这样的层级结构,让每一个Znode节点拥有唯一的路径,就像命名空间一样对不同信息作出清晰的隔离。
  • ZooKeeper的节点是通过像树一样的结构来进行维护的,并且每一个节点通过路径来标示以及访问。
  • 除此之外,每一个节点还拥有自身的一些信息,包括:数据、数据长度、创建时间、修改时间等等。
  • 从这样一类既含有数据,又作为路径表标示的节点的特点中,可以看出,ZooKeeper的节点既可以被看做是一个文件,又可以被看做是一个目录,它同时具有二者的特点。为了便于表达,今后我们将使用Znode来表示所讨论的ZooKeeper节点。
  • 每一个znode默认能够存储1MB的数据
  • znode是由客户端创建的,它和创建它的客户端的内在联系,决定了它的存在性,一般存在四种类型节点:
    • PERSISTENT-持久化节点:创建本节点的客户端在与zookeeper服务的连接断开后,这个节点也不会被删除(除非使用API强制删除)
    • PERSISTENT_SEQUENTIAL-持久化顺序编号节点:当客户端请求创建这个节点A后,zookeeper会根据parent-znode的zxid状态,为这个A节点编写一个全目录唯一的编号(这个编号只会一直增长)。当客户端与zookeeper服务的连接断开后,这个节点也不会被删除。
    • EPHEMERAL-临时目录节点:创建本节点的客户端在与zookeeper服务的连接断开后,这个节点(还有涉及到的子节点)就会被删除。
    • EPHEMERAL_SEQUENTIAL-临时顺序编号目录节点:当客户端请求创建这个节点A后,zookeeper会根据parent-znode的zxid状态,为这个A节点编写一个全目录唯一的编号(这个编号只会一直增长)。当创建这个节点的客户端与zookeeper服务的连接断开后,这个节点被删除。
    • 【注意】:无论是EPHEMERAL还是EPHEMERAL_SEQUENTIAL节点类型,在zookeeper的client异常终止后,节点也会被删除。

二、Zookeeper的安装部署

1、Zookeeper的下载

在Zookeeper官网,选择你需要的版本进行下载,以下是我下载的版本。

image-20230914153823247

image-20230914154058193

2、Zookeeper的安装

本地模式(单机模式standalone)安装部署

Step1:将下载好的压缩包上传到虚拟机的指定目录下,我上传到了/opt/software/

Step2:将压缩包进行解压到指定目录下,我解压到了/opt/app/下

tar -zxvf apache-zookeeper-3.8.2-bin.tar.gz -C /opt/app/

Step3:将zookeeper的文件夹进行重命名

mv apache-zookeeper-3.8.2-bin/ zookeeper-3.8.2

Step4:配置环境变量,并进行source使配置文件生效

vim /etc/profile source /etc/profile

image-20230914154523937

Step5:进入/opt/app/zookeeper-3.8.2/conf目录下,将此配置文件进行重命名mv zoo_sample.cfg zoo.cfg,然后进行编辑。并且在/opt/app/zookeeper-3.8.2/新建目录touch zkData

image-20230914154730291

Step6:使用命令zkServer.sh start启动zookeeper,使用命令zkServer.sh status查看zookeeper状态,使用命令netstat -untlp查看端口号

image-20230914154925015

image-20230914155004720

Step7:使用命令zkCli.sh -server localhost:2181,进入客户端

image-20230914155112299

Step8:使用命令zkServer.sh stop退出

image-20230914155154497

分布式(集群模式cluster)安装部署

  • 集群规划

    • 在node1、node2、node3三个节点上部署Zookeeper。
      
  • 先选择node1节点进行解压安装步骤和本地模式安装部署一样

  • 修改配置文件zoo.cfg

[root@node1 software]# vim /opt/app/zookeeper/conf/zoo.cfg
#修改dataDir数据目录
dataDir=/opt/module/zookeeper-3.8.2/zkData
#在文件最后增加如下配置
server.1=node1:2888:3888
server.2=node2:2888:3888
server.3=node3:2888:3888server.A=B:C:D。
A是一个数字,表示这个是第几号服务器;
B是这个服务器的ip地址;
C是这个服务器与集群中的Leader服务器交换信息的端口;
D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。
集群模式下配置一个文件myid,这个文件在dataDir目录下,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。

image-20230914165158962

  • /opt/app/zookeeper-3.8.2下创建一个文件夹mkdir zkData,再进入此目录创建文件touch myid定义当前主机的编号。
#在配置zoo.cfg的时候配置了server.1/2/3这个配置项中  数字123代表的就是第几号服务器
#其中这个数字必须在zookeeper的zkData的myid文件中定义  并且定义的时候必须和配置项对应的IP相互匹配
[root@node1 zookeeper]# touch /opt/app/zookeeper/zkData/myid
[root@node1 zookeeper]# vim /opt/app/zookeeper/zkData/myid
#文件中写入当前主机对应的数字 然后保存退出即可 例 node1节点的myid写入1   node2节点的myid写入:2   node3节点的myid写入:3

image-20230914170134011

  • 拷贝配置好的zookeeper到其他机器上

    scp -r /opt/app/zookeeper-3.8.2/ root@node2:/opt/app/
    scp -r /opt/app/zookeeper-3.8.2/ root@node3:/opt/app/
    并分别修改myid文件中内容为2、3
    

image-20230914202418214

  • 将node2、node3节点上的zookeeper所需的环境变量进行配置。

image-20230914202607865

  • 分别启动zookeeper并查看状态

image-20230914203152616

三、zookeeper的内部实现原理

1、选举机制

  • 半数机制(Paxos协议):集群中半数以上机器存活,集群可用。所以zookeeper适合装在奇数台机器上。
  • Zookeeper虽然在配置文件中并没有指定master和slave。但是,zookeeper工作时,是有一个节点为leader,其他则为follower,Leader是通过内部的选举机制临时产生的

1、Zookeeper第一次启动的选举机制

  • Zookeeper的内部选举机制

    • 假设有五台服务器组成的zookeeper集群,它们的id从1-5,同时它们都是最新启动的,也就是没有历史数据,在存放数据量这一点上,都是一样的。假设这些服务器依序启动, 他们内部的实现过程如图所示

      img

      • 服务器1启动,此时只有它一台服务器启动了,它发出去的报没有任何响应,所以它的选举状态一直是LOOKING状态。
      • 服务器2启动,它与最开始启动的服务器1进行通信,互相交换自己的选举结果,由于两者都没有历史数据,所以id值较大的服务器2胜出,但是由于没有达到超过半数以上的服务器都同意选举它(这个例子中的半数以上是3),所以服务器1、2还是继续保持LOOKING状态。
      • 服务器3启动,根据前面的理论分析,服务器3成为服务器1、2、3中的老大,而与上面不同的是,此时有三台服务器选举了它,所以它成为了这次选举的leader。
      • 服务器4启动,根据前面的分析,理论上服务器4应该是服务器1、2、3、4中最大的,但是由于前面已经有半数以上的服务器选举了服务器3,所以它只能接收当小弟的命了。
      • 服务器5启动,同4一样当小弟。

2、zookeeper非第一次启动的选举机制

  • SID:服务器ID。用来唯一标识一台ZooKeeper集群中的机器,每台机器不能重复,和myid一致。
  • ZXID:事务ID。ZXID是一个事务ID,用来标识一次服务器状态的变更。在某一时刻,集群中的每台机器的ZXID值不一定完全一致,这ZooKeeper服务器对于客户端“更新请求”的处理逻辑有关。
  • Epoch:每个Leader任期的代号。没有Leader时同一轮投票过程中的逻辑时钟值是相同的。每投完一次票这个数据就会增加

zk选举

2、Zookeeper写数据流程

1、直接写Leader节点的流程

写leader

2、直接写Follower的流程

写follower

3、写数据流程的详细概述

  • 比如 Client 向 ZooKeeper 的 Server1 上写数据,发送一个写请求。
  • 如果Server1不是Leader,那么Server1 会把接受到的请求进一步转发给Leader,因为每个ZooKeeper的Server里面有一个是Leader这个Leader 会将写请求广播给各个Server,比如Server1和Server2, 各个Server写成功后就会通知Leader。
  • 当Leader收到大多数 Server 数据写成功了,那么就说明数据写成功了。如果这里三个节点的话,只要有两个节点数据写成功了,那么认为数据写成功了。写成功之后,Leader会告诉Server1数据写成功了。
  • Server1会进一步通知 Client 数据写成功了,这时就认为整个写操作成功。ZooKeeper 整个写数据流程就是这样的。

四、Zookeeper的客户端命令行操作

  • 使用命令,连接zookeeper集群zkCli.sh -server node:2181,node2:2181,node3:2181

1、命令行语法

命令基本语法功能描述
help显示所有操作命令
ls path [watch]使用 ls 命令来查看当前znode中所包含的内容
ls -s path [watch]查看当前节点信息
create [-e] [-s]创建节点 -s 含有序列 -e 临时(重启或者超时消失)
get path [watch]获得节点的值
set设置节点的具体值
stat查看节点状态
delete删除节点
rmr/deleteall递归删除节点

2、命令行基本操作

  1. 启动命令行客户端

    zkCli.sh -server node1:2181,node2:2181,node3:2181
    

    image-20230917155449174

  2. 显示所有操作命令

    help
    

    image-20230917155652051

    image-20230917155719895

  3. 查看znode节点信息

    ls / 
    

    image-20230917155526869

  4. 查看znode某节点的详细信息

    [zk: node1:2181(CONNECTED) 5] ls -s / 
    [zookeeper]cZxid = 0x0 
    ctime = Thu Jan 01 08:00:00 CST 1970 
    mZxid = 0x0 
    mtime = Thu Jan 01 08:00:00 CST 1970 
    pZxid = 0x0 
    cversion = -1 
    dataVersion = 0 
    aclVersion = 0 
    ephemeralOwner = 0x0 
    dataLength = 0 
    numChildren = 1 (1)czxid:创建节点的事务 zxid 每次修改 ZooKeeper 状态都会产生一个 ZooKeeper 事务 ID。事务 ID 是 ZooKeeper 中所 有修改总的次序。每次修改都有唯一的 zxid,如果 zxid1 小于 zxid2,那么 zxid1 在 zxid2 之前发生。 (2)ctime:znode 被创建的毫秒数(从 1970 年开始) (3)mzxid:znode 最后更新的事务 zxid (4)mtime:znode 最后修改的毫秒数(从 1970 年开始) (5)pZxid:znode 最后更新的子节点 zxid(6)cversion:znode 子节点变化号,znode 子节点修改次数 (7)dataversion:znode 数据变化号 (8)aclVersion:znode 访问控制列表的变化号 (9)ephemeralOwner:如果是临时节点,这个是 znode 拥有者的 session id。如果不是 临时节点则是 0。 (10)dataLength:znode 的数据长度 (11)numChildren:znode 子节点数量
    
  5. 创建普通节点(永久节点 + 不带序号)

    create /sanguo "weishuwu"
    

    image-20230917160623571

  6. 获得节点的值

    get -s /test 
    
  7. 创建带序号的节点(永久节点 + 带序号)

    create  -s  /acreate  -s  /a create  /a 如果原来没有序号节点,序号从 0 开始依次递增。如果原节点下已有 2 个节点,则再排序时从 2 开始,以此类推。
    

    image-20230917161532151

  8. 创建短暂节点(短暂节点 + 不带序号 or 带序号)

     (1)创建短暂的不带序号的节点 
    create -e /b(2)创建短暂的带序号的节点 
    create -e -s /b(3)在当前客户端是能查看到的 
    ls /(4)退出当前客户端然后再重启客户端 [zk: node1:2181(CONNECTED) 12] quit [root@node1 zookeeper-3.5.7]$ bin/zkCli.sh (5)再次查看根目录下短暂节点已经删除 
    ls /
    

    image-20230917161824546

    image-20230917161947604

  9. 修改节点数据值

    [zk: node1:2181(CONNECTED) 6] set /sanguo/weiguo "simayi"
    
  10. 删除节点

    delete /test
    
  11. 递归删除节点

    deleteall /test
    

    image-20230917161321106

  12. 查看节点状态

    stat /sanguo 
    

    image-20230917160608475

    13.监听节点的数据变化

    get -w /sanguo
    

    14.监听节点的子节点变化

    ls -w /sanguo
    

    image-20230917161125996

五、高可用HA-Hadoop集群的搭建

1、高可用HA概述

  • 所谓HA(high available),即高可用(7*24小时不中断服务)。
  • 实现高可用最关键的策略是消除单点故障。HA严格来说应该分成各个组件的HA机制:HDFS的HA和YARN的HA。
  • Hadoop2.0之前,在HDFS集群中NameNode存在单点故障(SPOF)。
  • NameNode主要在以下两个方面影响HDFS集群:
    • NameNode机器发生意外,如宕机,集群将无法使用,直到管理员重启。
    • NameNode机器需要升级,包括软件、硬件升级,此时集群也将无法使用。
  • HDFS HA功能通过配置Active/Standby两个nameNodes实现在集群中对NameNode的热备来解决上述问题。如果出现故障,如机器崩溃或机器需要升级维护,这时可通过此种方式将NameNode很快的切换到另外一台机器。

2、HDFS-HA工作机制:通过双namenode消除单点故障

  • HDFS-HA工作要点

    • 元数据管理方式需要改变(不需要SecondaryNameNode)

      内存中各自保存一份元数据;
      Edits日志只有Active状态的namenode节点可以做写操作;
      两个namenode都可以读取edits;
      共享的edits放在一个共享存储中管理(qjournal和NFS两个主流实现);
      
    • 需要一个状态管理功能模块

      实现了一个zkfailover,常驻在每一个namenode所在的节点,每一个zkfailover负责监控自己所在namenode节点,利用zk进行状态标识,当需要进行状态切换时,由zkfailover来负责切换,切换时需要防止brain split现象的发生。
      
    • 必须保证两个NameNode之间能够ssh无密码登录。

    • 隔离(Fence),即同一时刻仅仅有一个NameNode对外提供服务。

3、HDFS-HA集群配置

  • 环境准备:

    • 修改IP

    • 修改主机名及主机名和IP地址的映射

    • 关闭防火墙

    • ssh免密登录

    • 安装JDK,配置环境变量等

  • 规划集群

node1node2node3
NameNodeNameNode-
JournalNodeJournalNodeJournalNode
DataNodeDataNodeDataNode
ZKZKZK
ResourceManager
NodeManagerNodeManagerNodeManager
  • 配置Zookeeper集群:在上面的笔记中已经记录过!

  • 配置HDFS-HA集群:

    • 配置hadoop-env.sh

      export JAVA_HOME=/opt/app/jdk
      
    • 配置core-site.xml

      <configuration>
      <!-- 把两个NameNode的地址组装成一个集群HadoopCluster --><property><name>fs.defaultFS</name><value>hdfs://HC</value></property><!-- 指定hadoop运行时产生文件的存储目录 --><property><name>hadoop.tmp.dir</name><value>/opt/app/hadoop-3.1.4/metaData</value></property><!--配置连接的zookeeper的地址--><property><name>ha.zookeeper.quorum</name><value>node1:2181,node2:2181,node3:2181</value></property>
      </configuration>
      

    image-20230914213405059

    • 配置hdfs-site.xml

      <configuration><!-- 完全分布式集群名称 --><property><name>dfs.nameservices</name><value>HC</value></property><!-- 集群中NameNode节点都有哪些 --><property><name>dfs.ha.namenodes.HC</name><value>nn1,nn2</value></property><!-- nn1的RPC通信地址 --><property><name>dfs.namenode.rpc-address.HC.nn1</name><value>node1:9000</value></property><!-- nn2的RPC通信地址 --><property><name>dfs.namenode.rpc-address.HC.nn2</name><value>node2:9000</value></property><!-- nn1的http通信地址 --><property><name>dfs.namenode.http-address.HC.nn1</name><value>node1:9870</value></property><!-- nn2的http通信地址 --><property><name>dfs.namenode.http-address.HC.nn2</name><value>node2:9870</value></property><!-- 指定NameNode元数据在JournalNode上的存放位置 --><property><name>dfs.namenode.shared.edits.dir</name><value>qjournal://node1:8485;node2:8485;node3:8485/HadoopCluster</value></property><!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 --><property><name>dfs.ha.fencing.methods</name><value>sshfence</value></property><!-- 使用隔离机制时需要ssh无秘钥登录--><property><name>dfs.ha.fencing.ssh.private-key-files</name><value>/root/.ssh/id_rsa</value></property><!-- 声明journalnode服务器存储目录--><property><name>dfs.journalnode.edits.dir</name><value>/opt/app/hadoop-3.1.4/journalnodeData</value></property><!-- 关闭权限检查--><property><name>dfs.permissions.enable</name><value>false</value></property><!-- 访问代理类:client,HadoopCluster,active配置失败自动切换实现方式--><property><name>dfs.client.failover.proxy.provider.HC</name><value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value></property><property><name>dfs.replication</name><value>3</value></property><property><name>dfs.namenode.datanode.registration.ip-hostname-check</name><value>true</value></property><property><name>dfs.ha.automatic-failover.enabled</name><value>true</value></property></configuration>
      
    • 拷贝配置好的hadoop环境到其他节点

    scp /opt/app/hadoop-3.1.4/etc/hadoop/core-site.xml root@node2:/opt/app/hadoop-3.1.4/etc/hadoop/
    scp /opt/app/hadoop-3.1.4/etc/hadoop/core-site.xml root@node3:/opt/app/hadoop-3.1.4/etc/hadoop/
    scp /opt/app/hadoop-3.1.4/etc/hadoop/hdfs-site.xml root@node3:/opt/app/hadoop-3.1.4/etc/hadoop/
    scp /opt/app/hadoop-3.1.4/etc/hadoop/hdfs-site.xml root@node2:/opt/app/hadoop-3.1.4/etc/hadoop/
    
  • 启动HDFS-HA集群

    • 安装psmisc软件

    zkfc的自动故障转移需要借助psmisc软件完成,因此需要在三个节点上安装这个软件

    yum install -y psmisc
    

    image-20230914231656221

    • 在各个JournalNode节点上,输入以下命令启动journalnode服务:
      sbin/hadoop-daemon.sh start journalnode

    image-20230914232428309

    • 在[nn1]上,对其进行格式化,并启动:
      rm -rf metaData/ journalnodeData/  删除三台节点/opt/app/hadoop-3.1.4   hdfs namenode -format  只需要在第一台节点格式化hadoop-daemon.sh start namenode    只需要执行一次即可,之后就不需要再执行
    
    • 遇到报错,如图

      • image-20230914233530301
      • vim /opt/app/hadoop-3.1.4/etc/hadoop/hadoop-env.sh image-20230914233727627
      • scp /opt/app/hadoop-3.1.4/etc/hadoop/hadoop-env.sh root@node2:/opt/app/hadoop-3.1.4/etc/hadoop/
      • scp /opt/app/hadoop-3.1.4/etc/hadoop/hadoop-env.sh root@node3:/opt/app/hadoop-3.1.4/etc/hadoop/
      • image-20230914234007915
      • 启动start-dfs.sh
        • image-20230914234221142
    • 在[nn2]上,同步nn1的元数据信息:
      bin/hdfs namenode -bootstrapStandby只需要执行一次即可,之后就不需要再执行;

      hadoop-daemon.sh start namenode并在第二台节点上启动namenode

    • 在三台节点上启动datanodehadoop-daemon.sh start datanode

    • 重新启动HDFS

      • 关闭所有HDFS服务:sbin/stop-dfs.sh
      • 启动Zookeeper集群:bin/zkServer.sh start
      • 初始化HA在Zookeeper中状态:bin/hdfs zkfc -formatZK
      • 启动HDFS服务:sbin/start-dfs.sh
      • 在各个NameNode节点上启动DFSZK Failover Controller,先在哪台机器启动,哪个机器的NameNode就是Active NameNode:sbin/hadoop-daemin.sh start zkfc
    • 验证

      • image-20230917171516996
      • image-20230917171551592
      • 将Active NameNode进程kill:kill -9 namenode的进程id
        • image-20230917171646083
      • 将Active NameNode机器断开网络:service network stop
        • image-20230917171634976

六、YARN-HA配置

配置YARN-HA集群

  • 环境准备
    • 修改IP
    • 修改主机名及主机名和IP地址的映射
    • 关闭防火墙
    • ssh免密登录
    • 安装JDK,配置环境变量等
    • 配置Zookeeper集群
  • 规划集群
node1node2node3
NameNodeNameNode
JournalNodeJournalNodeJournalNode
DataNodeDataNodeDataNode
ZKZKZK
ResourceManagerResourceManager
NodeManagerNodeManagerNodeManager
  • 具体配置 —— 在每个节点上进行配置

    • yarn-site.xml

      <configuration><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><!--启用resourcemanager ha--><property><name>yarn.resourcemanager.ha.enabled</name><value>true</value></property><!--声明两台resourcemanager的地址--><property><name>yarn.resourcemanager.cluster-id</name><value>cluster-yarn1</value></property><property><name>yarn.resourcemanager.ha.rm-ids</name><value>rm1,rm2</value></property><property><name>yarn.resourcemanager.hostname.rm1</name><value>node1</value></property><property><name>yarn.resourcemanager.hostname.rm2</name><value>node2</value></property><!--指定zookeeper集群的地址--> <property><name>yarn.resourcemanager.zk-address</name><value>node1:2181,node2:2181,node3:2181</value></property><!--启用自动恢复--> <property><name>yarn.resourcemanager.recovery.enabled</name><value>true</value></property><!--指定resourcemanager的状态信息存储在zookeeper集群--> <property><name>yarn.resourcemanager.store.class</name>     <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value></property>
      </configuration>
      
    • 同步更新其他节点的配置信息

      • scp /opt/app/hadoop-3.1.4/etc/hadoop/yarn-site.xml root@node2:/opt/app/hadoop-3.1.4/etc/hadoop/
        scp /opt/app/hadoop-3.1.4/etc/hadoop/yarn-site.xml root@node3:/opt/app/hadoop-3.1.4/etc/hadoop/
        

        image-20230917230055889

  • 启动hdfs (本步骤可以不做,如果搭建过HA-Hadoop集群)

    • 在各个JournalNode节点上,输入以下命令启动journalnode服务:sbin/hadoop-daemon.sh start journalnode

    • 在[nn1]上,对其进行格式化,并启动:

      bin/hdfs namenode -format
      sbin/hadoop-daemon.sh start namenode
      
    • 在[nn2]上,同步nn1的元数据信息:bin/hdfs namenode -bootstrapStandby

    • 启动[nn2]:sbin/hadoop-daemon.sh start namenode

    • 启动所有datanode:sbin/hadoop-daemons.sh start datanode

    • 将[nn1]切换为Active:bin/hdfs haadmin -transitionToActive nn1

  • 启动yarn

    • 在node1中执行:sbin/start-yarn.sh
    • 在node2中执行:sbin/yarn-daemon.sh start resourcemanager
    • 查看服务状态:bin/yarn rmadmin -getServiceState rm1

image-20230917230905317

image-20230917231006420

七、在高可用环境下如何用MR程序做单词计数

编辑一下wc.txt,上传到hdfs上

image-20230918092044257

image-20230918092053070

打开idea,创建一个maven项目,引入编程依赖于pom.xml中

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.kang</groupId><artifactId>ha-test</artifactId><version>1.0</version><packaging>jar</packaging><name>ha-test</name><url>http://maven.apache.org</url><properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding></properties><dependencies><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.4</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>3.1.4</version></dependency><dependency><groupId>org.slf4j</groupId><artifactId>slf4j-log4j12</artifactId><version>1.6.1</version></dependency></dependencies>
</project>

编写MapReduce代码

image-20230918112525372

package com.kang;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class WCMapper extends Mapper<LongWritable, Text,Text,LongWritable> {@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context) throws IOException, InterruptedException {String line = value.toString();String[] words = line.split(" ");for (String word : words) {context.write(new Text(word),new LongWritable(1L));}}
}package com.kang;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class WCReduce extends Reducer<Text, LongWritable,Text,LongWritable> {@Overrideprotected void reduce(Text key, Iterable<LongWritable> values, Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {long sum = 0L;for (LongWritable value : values) {sum += value.get();}context.write(key,new LongWritable(sum));}
}package com.kang;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import javax.xml.soap.Text;
import java.io.IOException;public class WCDriver {public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {Configuration conf = new Configuration();conf.set("fs.defaultFS","hdfs://HC");Job job = Job.getInstance(conf);job.setJarByClass(WCDriver.class);FileInputFormat.setInputPaths(job,new Path("/wc.txt"));job.setMapperClass(WCMapper.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(LongWritable.class);job.setReducerClass(WCReduce.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(LongWritable.class);job.setNumReduceTasks(0);FileOutputFormat.setOutputPath(job,new Path("/output"));boolean flag = job.waitForCompletion(true);System.exit(flag?0:1);}
}

将hdfs-site.xml和core-site.xml从虚拟机上导出到Java项目目录下

image-20230918112631575

然后运行WCDriver,会收到报错信息,会显示权限不足,然后我们为了实现这一任务,我们将权限进行修改

image-20230918112748878

image-20230918112901312

再次运行程序,返回代码0,即运行成功

image-20230918112950486

image-20230918113032239

最后,我们将Hadoop分布式文件系统(HDFS)中文件和目录的默认权限恢复到默认权限类型

image-20230918113342735

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/81970.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1978-2021年全国各省城镇与农村恩格尔系数数据

1978-2021年全国各省城镇与农村恩格尔系数数据 1、时间&#xff1a;1978-2021年 2、指标&#xff1a;城镇恩格尔系数、农村恩格尔系数 3、范围&#xff1a;31省市 4、来源&#xff1a;各省年鉴 5、用途&#xff1a;反应居民生活质量 6、指标解释&#xff1a; 恩格尔系数…

【SpringSecurity】三更草堂项目案例分析3 - 鉴权操作

目录 鉴权RBAC 模型前置准备redis 实现角色权限获取 鉴权 RBAC 模型 参考 CSDN 文章 RBAC&#xff08;Role-Based Access Control&#xff09;&#xff0c;基于角色的访问控制&#xff0c;现在主流的权限管理系统的权限设计都是 RBAC 模型 所谓的 RBAC 模型&#xff0c;可以理…

Java精品项目源码第61期垃圾分类科普平台(代号V061)

Java精品项目源码第61期垃圾分类科普平台(代号V061) 大家好&#xff0c;小辰今天给大家介绍一个垃圾分类科普平台&#xff0c;演示视频公众号&#xff08;小辰哥的Java&#xff09;对号查询观看即可 文章目录 Java精品项目源码第61期垃圾分类科普平台(代号V061)难度指数&…

【TCP】滑动窗口、流量控制 以及拥塞控制

滑动窗口、流量控制 以及拥塞控制 1. 滑动窗口&#xff08;效率机制&#xff09;2. 流量控制&#xff08;安全机制&#xff09;3. 拥塞控制&#xff08;安全机制&#xff09; 1. 滑动窗口&#xff08;效率机制&#xff09; TCP 使用 确认应答 策略&#xff0c;对每一个发送的数…

MySQL的常用术语

目录 1.关系 2.元组 3.属性 MySQL从小白到总裁完整教程目录:https://blog.csdn.net/weixin_67859959/article/details/129334507?spm1001.2014.3001.5502 1.关系 前面的博客有说到,MySQL是一款关系型数据库管理软件,一个关系就是 一张二维表(表) 我想大家都知道表格怎么…

【100天精通Python】Day61:Python 数据分析_Pandas可视化功能:绘制饼图,箱线图,散点图,散点图矩阵,热力图,面积图等(示例+代码)

目录 1 Pandas 可视化功能 2 Pandas绘图实例 2.1 绘制线图 2.2 绘制柱状图 2.3 绘制随机散点图 2.4 绘制饼图 2.5 绘制箱线图A 2.6 绘制箱线图B 2.7 绘制散点图矩阵 2.8 绘制面积图 2.9 绘制热力图 2.10 绘制核密度估计图 1 Pandas 可视化功能 pandas是一个强大的数…

Autojs 小游戏实践-神农百草园

概述 最近一直再写刷视频软件脚本&#xff0c;比如手机视频软件太多&#xff0c;每天都需要手动提现羊毛&#xff0c;太累&#xff0c;使用Autojs来帮助我提现&#xff0c;签到&#xff0c;扯远了&#xff0c;因为做刷视频脚本感觉有点无聊&#xff0c;所以试着做小游戏找图脚…

Openresty(二十二)ngx.balance和balance_by_lua终结篇

一 灰度发布铺垫 ① init_by_lua* init_by_lua init_by_lua_block 特点: 在openresty start、reload、restart时执行,属于master init 阶段机制&#xff1a; nginx master 主进程加载配置文件时&#xff0c;运行全局Lua VM级别上的参数指定的Lua代码场景&#xff1a; …

每日一题~二叉搜索树中的众数

题目链接&#xff1a;501. 二叉搜索树中的众数 - 力扣&#xff08;LeetCode&#xff09; 题目描述&#xff1a; 思路分析&#xff1a; 由题可知&#xff0c;题目中所给的树是一颗二叉搜索树&#xff0c;二叉搜索树的中序遍历结果是一个从小到大的数据集&#xff0c;那么我们可…

「聊设计模式」之抽象工厂模式(Abstract Factory)

&#x1f3c6;本文收录于《聊设计模式》专栏&#xff0c;专门攻坚指数级提升&#xff0c;助你一臂之力&#xff0c;带你早日登顶&#x1f680;&#xff0c;欢迎持续关注&&收藏&&订阅&#xff01; 前言 在软件开发中&#xff0c;设计模式是一种被广泛使用的经验…

C++(day4)

思维导图 封装Mystring #include <iostream> #include<cstring>using namespace std;class Mystring{ public://无参构造函数Mystring():size(10){strnew char[size];strcpy(str,"");cout<<"无参构造函数"<<endl;}//有参构造函数…

平衡二叉树删除结点后的调整操作

1.回顾插入操作 插入新结点后&#xff0c;要保持二叉排序树的特性不变&#xff08;左<中<右)若插入新结点导致不平衡&#xff0c;则需要调整平衡。 2.删除操作 删除结点后&#xff0c;要保持二叉排序树的特性不变&#xff08;左<中<右)若删除结点导致不平衡&…

C++---链表

1、链表 1.1、链表的结构 每个链表开头都有一个头指针Head尾节点的指针域为NULL&#xff0c;用于判断此列表是否结束 如果一个链表开始就为NULL&#xff0c;那么该链表为空链表 链表中的先后不代表在真实内存中的位置&#xff0c;只是单纯的逻辑上关系 1.2、创建链表 我们首…

网络编程 day1

1->x.mind网络编程基础 2->简述字节序的概念&#xff0c;并用共用体&#xff08;联合体&#xff09;的方式计算本机的字节序 1.字节序是指不同类型的CPU主机&#xff0c;内存存储多字节整数序列的方式 2.小端字节序&#xff1a;低序字节存储在低地址上 3.大端字节序&a…

定制化图标——Element UI 组件图标替换指南

本篇博客将介绍如何在使用 Element UI 组件时对原生图标进行定制化替换&#xff0c;提供了适用于满足个性化需求的方法和技巧。 引言 Element UI 是一款基于 Vue.js 的流行 UI 组件库&#xff0c;在前端开发中得到广泛应用。然而&#xff0c;在使用 Element UI 的组件时&#…

中小型教育机构这样做,让你轻松抓住受众注意力

教育一直都是家长对于孩子最关心的事情&#xff0c;对于部分家庭来说&#xff0c;教育支出占整个家庭支出的50%左右。 而软文作为目前效果比较明显而且性价高的推广方式&#xff0c;也很适合教育培训行业&#xff0c;因为它能让潜在客户可以清楚地了解产品的特性&#xff0c;感…

Java面试八股文宝典:初识数据结构-数组的应用扩展之HashMap

前言 除了基本的数组&#xff0c;还有其他高级的数据结构&#xff0c;用于更复杂的数据存储和检索需求。其中&#xff0c;HashMap 是 Java 集合框架中的一部分&#xff0c;用于存储键值对&#xff08;key-value pairs&#xff09;。HashMap 允许我们通过键来快速查找和检索值&…

004-Windows下开发环境搭建

Windows下开发环境搭建 文章目录 Windows下开发环境搭建项目介绍版本控制工具Git 与 SVNWindow下安装Git Qt 开发工具静态编译Qt环境安装 串口模拟器比较工具SQLite 数据库查看小工具预告 关键字&#xff1a; Qt、 Qml、 开发环境、 Windows、 C 项目介绍 欢迎来到我们的 …

数据库操作-DML/DQL

数据库操作-DML DML英文全称是Data Manipulation Language(数据操作语言)&#xff0c;用来对数据库中表的数据记录进行增、删、改操作。 添加数据&#xff08;INSERT&#xff09; 修改数据&#xff08;UPDATE&#xff09; 删除数据&#xff08;DELETE&#xff09; 增加(ins…

python 异常

1.捕获异常 2.密码爆破 3.