【100天精通Python】Day61:Python 数据分析_Pandas可视化功能:绘制饼图,箱线图,散点图,散点图矩阵,热力图,面积图等(示例+代码)

目录

1 Pandas 可视化功能

2 Pandas绘图实例

2.1 绘制线图

2.2 绘制柱状图

2.3 绘制随机散点图

2.4 绘制饼图

2.5 绘制箱线图A

2.6 绘制箱线图B

2.7 绘制散点图矩阵

 2.8 绘制面积图

2.9 绘制热力图

 2.10 绘制核密度估计图


1 Pandas 可视化功能

pandas是一个强大的数据分析库,提供了一些可视化工具来帮助用户更好地理解和展示数据。以下是pandas可视化工具的一些常见功能:

1. 折线图:通过plot()函数可以绘制折线图,展示数据随时间或其他变量的变化趋势。

2. 散点图:使用scatter()函数可以绘制散点图,在二维平面上展示两个变量之间的关系。

3. 条形图:使用bar()函数可以绘制条形图,用于比较不同类别或组的数值大小。

4. 直方图:使用hist()函数可以绘制直方图,用于展示数值型数据的分布情况。

5. 饼图:使用pie()函数可以绘制饼图,展示不同类别的占比情况。

6. 箱线图:使用boxplot()函数可以绘制箱线图,展示数值型数据的分布特征、离群值等。

Pandas 是一个用于数据处理和分析的流行库,它提供了一些内置的可视化功能,通常基于 Matplotlib 这个底层库。

  • 绘制线图:

df['column_name'].plot(kind='line')

绘制柱状图:

df['column_name'].plot(kind='bar')

绘制散点图:

df.plot(x='x_column', y='y_column', kind='scatter')

hist()函数hist()函数用于绘制直方图,以显示数据的分布和频率。

df['column_name'].hist(bins=10)

boxplot()函数boxplot()函数用于绘制箱线图,显示数据的分位数和离群值。

df.boxplot(column='column_name')

scatter_matrix()函数scatter_matrix()函数用于绘制多个变量之间的散点图矩阵,有助于了解变量之间的关系。

from pandas.plotting import scatter_matrixscatter_matrix(df, alpha=0.5, figsize=(8, 8), diagonal='hist')

plotting.scatter_matrix()函数:这是一个更高级的散点图矩阵绘制函数,可以自定义每个子图的属性。

from pandas.plotting import scatter_matrixscatter_matrix(df, alpha=0.5, figsize=(8, 8), diagonal='kde', color='red')

plot.barh()函数plot.barh()函数用于绘制水平柱状图。

df['column_name'].plot(kind='barh')

plot.pie()函数plot.pie()函数用于绘制饼图,用于显示数据的占比。

df['column_name'].plot(kind='pie', autopct='%1.1f%%')

plot.area()函数plot.area()函数用于绘制堆叠面积图,显示数据的累积变化趋势。

df.plot.area()

plot.kde()函数plot.kde()函数用于绘制核密度估计图,显示数据的概率密度分布。


2 Pandas绘图实例

2.1 绘制线图

import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
# 创建数据
data = {'年份': [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017],'销售额': [100, 150, 120, 180, 200, 250, 300, 280]}# 转换为DataFrame格式
df = pd.DataFrame(data)# 绘制折线图
plt.plot(df['年份'], df['销售额'], marker='o')# 设置x轴和y轴标签、标题
plt.xlabel('年份')
plt.ylabel('销售额')
plt.title('销售额变化趋势')# 添加图例
plt.legend(['销售额'])# 显示图形
plt.show()

当使用Pandas绘制柱状图、散点图和饼图时,您可以使用plot()函数的不同kind参数来指定要绘制的图表类型。

2.2 绘制柱状图

import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 替换为您系统中支持的字体
# 创建一个示例DataFrame
data = {'Category': ['A', 'B', 'C', 'D'],'Values': [10, 15, 7, 12]}df = pd.DataFrame(data)# 绘制柱状图
df.plot(x='Category', y='Values', kind='bar', title='柱状图')
plt.xlabel('类别')
plt.ylabel('数值')
plt.show()

2.3 绘制随机散点图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 替换为您系统中支持的字体
# 生成随机数据
np.random.seed(0)  # 设置随机种子以确保可重复性
num_points = 100
x = np.random.rand(num_points)  # 随机生成x坐标
y = np.random.rand(num_points)  # 随机生成y坐标
colors = np.random.rand(num_points)  # 随机生成颜色值# 创建DataFrame
data = {'X': x, 'Y': y, 'Color': colors}
df = pd.DataFrame(data)# 绘制散点图
plt.figure(figsize=(8, 6))  # 设置图形大小
plt.scatter(x='X', y='Y', c='Color', data=df, cmap='viridis', alpha=0.7)
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.title('随机散点图')
plt.colorbar(label='颜色')
plt.show()

上述示例中,我们首先使用NumPy生成了一些随机的x和y坐标数据,以及随机的颜色值。然后,我们将这些数据放入一个Pandas DataFrame 中,并使用Matplotlib绘制了散点图。颜色使用了色彩映射(cmap),并添加了颜色条(colorbar)以显示颜色映射的对应关系。

2.4 绘制饼图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 替换为您系统中支持的字体# 创建一个示例DataFrame,包含不同类别的值
data = {'Category': ['A', 'B', 'C', 'D'],'Values': [10, 15, 7, 12]}df = pd.DataFrame(data)# 指定用于饼图的数值列和标签列
values = df['Values']
labels = df['Category']# 绘制饼图
plt.figure(figsize=(6, 6))  # 设置图形大小
df.plot(y='Values', kind='pie', labels=df['Category'], autopct='%1.1f%%', title='饼图')  # 绘制饼图
plt.title('饼图')  # 设置图表标题# 显示图表
plt.axis('equal')  # 使饼图保持圆形
plt.show()

在上述示例中,首先创建了一个包含类别和对应数值的DataFrame。然后,使用plt.pie()函数来绘制饼图,其中values包含数值数据,labels包含饼图的标签。autopct参数用于显示百分比标签,startangle参数用于指定饼图的起始角度。最后,使用plt.axis('equal')确保饼图保持圆形。

2.5 绘制箱线图A

import pandas as pd
import matplotlib.pyplot as plt
import random
plt.rcParams['font.sans-serif'] = ['SimHei']# 创建示例数据集
data = {'Product_A': [random.randint(50, 100) for _ in range(50)],'Product_B': [random.randint(40, 90) for _ in range(50)],'Product_C': [random.randint(60, 110) for _ in range(50)],'Product_D': [random.randint(30, 70) for _ in range(50)],'Product_E': [random.randint(20, 80) for _ in range(50)],'Product_F': [random.randint(70, 120) for _ in range(50)]
}df = pd.DataFrame(data)# 使用boxplot()函数绘制箱线图
df.boxplot(column=['Product_A', 'Product_B', 'Product_C', 'Product_D', 'Product_E', 'Product_F'])# 添加标题和标签
plt.title('不同产品销售数据箱线图')
plt.ylabel('销售数量')# 显示图形
plt.show()

         在这个示例中,我们创建了一个包含6种产品的示例DataFrame df,每种产品有50个销售数据点。然后,我们使用boxplot()函数绘制了这6种产品的箱线图。

        箱线图将展示每种产品的销售数量分布情况,包括中位数、四分位数、离群值等信息。通过比较不同产品的箱线图,您可以更好地了解它们的销售数据分布,以便进行进一步的分析和决策。这种可视化方法可以帮助您分析潜在的销售趋势和异常情况。

2.6 绘制箱线图B

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #替换为系统中支持的字体# 创建一个示例数据集,包括三个组的数据
data = pd.DataFrame({'Group1': np.random.normal(0, 1, 100),'Group2': np.random.normal(2, 1, 100),'Group3': np.random.normal(1, 1, 100),'Group4': np.random.normal(3, 1, 100)
})# 使用boxplot()函数绘制箱线图,指定显示的列和参数
data.boxplot(column=['Group1', 'Group2', 'Group3', 'Group4'],notch=True,  # 添加缺口以估计中位数的不确定性sym='o',  # 设置异常值标记为圆圈vert=False,  # 水平显示箱线图patch_artist=True,  # 填充箱体颜色showmeans=True,  # 显示均值点meanline=True,  # 显示均值线widths=0.5  # 箱体宽度)# 添加标题和标签
plt.title('箱线图示例')
plt.xlabel('值')
plt.ylabel('分组')# 显示图形
plt.show()

在这个示例中,我们创建了一个包含四个组的示例DataFrame data,每个组有100个随机数。然后,我们使用boxplot()函数绘制箱线图,并自定义了多个参数:

  • notch=True:在箱体中添加缺口以估计中位数的不确定性。
  • sym='o':将异常值标记为圆圈。
  • vert=False:水平显示箱线图。
  • patch_artist=True:填充箱体颜色。
  • showmeans=True:显示均值点。
  • meanline=True:显示均值线。
  • widths=0.5:设置箱体宽度。

其中每个箱体表示一个组的数据分布情况。箱线图还显示了中位数、均值点和异常值。这种可视化工具有助于比较多个组的数据分布,并检测异常值。

2.7 绘制散点图矩阵

pandas.plotting.scatter_matrix()函数用于绘制多个变量之间的散点图矩阵,帮助您了解各个变量之间的关系。这个函数可以自定义每个子图的属性,包括颜色、标记、直方图和核密度估计等。下面是一个详细的示例:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pandas.plotting import scatter_matrix
plt.rcParams['font.sans-serif'] = ['SimHei']
# 创建一个包含多个变量的示例数据集
data = pd.DataFrame(np.random.randn(100, 4), columns=['A', 'B', 'C', 'D'])# 使用scatter_matrix()函数绘制散点图矩阵
# 主要参数包括DataFrame对象,alpha(透明度),diagonal(对角线上的图表类型),color(颜色),marker(标记类型)等
scatter_matrix(data, alpha=0.8, figsize=(8, 8), diagonal='hist', color='blue', marker='o')# 添加标题
plt.suptitle('散点图矩阵示例')# 显示图形
plt.show()

在这个示例中,我们首先创建了一个包含四个随机变量的示例DataFrame data。然后,我们使用scatter_matrix()函数绘制散点图矩阵,指定了一些参数:

  • alpha参数设置透明度,这样可以看到重叠点。
  • figsize参数设置图形的大小。
  • diagonal参数设置对角线上的图表类型,这里使用直方图。
  • color参数设置散点的颜色。
  • marker参数设置散点的标记类型。

最后,我们添加了标题并显示图形。

 2.8 绘制面积图

面积图 (Area Plot)

面积图用于可视化时间序列或有序数据的变化趋势,通常用于显示数据的累积变化

import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']# 创建示例数据集
data = {'Year': [2000, 2001, 2002, 2003, 2004],'Product_A': [100, 120, 140, 160, 180],'Product_B': [80, 90, 110, 130, 150]
}df = pd.DataFrame(data)# 使用plot()函数创建面积图
plt.figure(figsize=(8, 6))
plt.stackplot(df['Year'], df['Product_A'], df['Product_B'], labels=['Product_A', 'Product_B'], alpha=0.7)
plt.xlabel('年份')
plt.ylabel('销售数量')
plt.title('面积图示例')
plt.legend(loc='upper left')
plt.show()

         在上述示例中,我们首先创建了一个包含年份和两种产品销售数量的示例DataFrame。然后,使用stackplot()函数创建面积图,alpha参数设置透明度,labels参数设置图例标签,legend()函数用于显示图例。 

2.9 绘制热力图

热力图 (Heatmap)

热力图用于可视化矩阵数据中各个元素之间的关系,通常通过颜色来表示数值的大小。

要在Pandas中绘制热力图,通常需要使用辅助库,最常见的是Seaborn和Matplotlib。Seaborn提供了高级的热力图绘制函数,而Matplotlib用于显示图形。以下是如何在Pandas中使用Seaborn和Matplotlib绘制热力图的示例:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as snsplt.rcParams['font.sans-serif'] = ['SimHei'] #替换为系统中支持的字体# 创建示例数据集
data = np.random.rand(5, 5)  # 5x5的随机矩阵# 转换为DataFrame
df = pd.DataFrame(data, columns=['A', 'B', 'C', 'D', 'E'])# 使用seaborn的heatmap()函数创建热力图
plt.figure(figsize=(8, 6))
sns.heatmap(df, annot=True, cmap='coolwarm', linewidths=.5)
plt.title('热力图示例')
plt.show()

 在上述示例中,我们首先创建了一个随机矩阵,并将其转换为Pandas DataFrame。然后,使用Seaborn的heatmap()函数来绘制热力图。参数annot=True用于在图表上显示数值标签,cmap用于设置颜色映射,linewidths用于设置单元格之间的间隔线宽度。


 2.10 绘制核密度估计图

 plot.kde()函数plot.kde()函数用于绘制核密度估计图,显示数据的概率密度分布。

import pandas as pd
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei'] #替换为系统中支持的字体# 创建示例数据集
data = {'Values': [10, 15, 13, 18, 25, 12, 22, 27, 16, 21]}df = pd.DataFrame(data)# 使用plot.kde()函数创建核密度估计图
df['Values'].plot.kde()
plt.xlabel('数值')
plt.ylabel('概率密度')
plt.title('核密度估计图示例')
plt.show()

在这个示例中,我们首先创建了一个包含示例数据的DataFrame df,然后使用plot.kde()函数绘制核密度估计图。这个图表显示了数据的概率密度分布,它是一个平滑的曲线,代表了数据在不同数值上的概率密度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/81964.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Autojs 小游戏实践-神农百草园

概述 最近一直再写刷视频软件脚本,比如手机视频软件太多,每天都需要手动提现羊毛,太累,使用Autojs来帮助我提现,签到,扯远了,因为做刷视频脚本感觉有点无聊,所以试着做小游戏找图脚…

Openresty(二十二)ngx.balance和balance_by_lua终结篇

一 灰度发布铺垫 ① init_by_lua* init_by_lua init_by_lua_block 特点: 在openresty start、reload、restart时执行,属于master init 阶段机制: nginx master 主进程加载配置文件时,运行全局Lua VM级别上的参数指定的Lua代码场景: …

每日一题~二叉搜索树中的众数

题目链接:501. 二叉搜索树中的众数 - 力扣(LeetCode) 题目描述: 思路分析: 由题可知,题目中所给的树是一颗二叉搜索树,二叉搜索树的中序遍历结果是一个从小到大的数据集,那么我们可…

「聊设计模式」之抽象工厂模式(Abstract Factory)

🏆本文收录于《聊设计模式》专栏,专门攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎持续关注&&收藏&&订阅! 前言 在软件开发中,设计模式是一种被广泛使用的经验…

C++(day4)

思维导图 封装Mystring #include <iostream> #include<cstring>using namespace std;class Mystring{ public://无参构造函数Mystring():size(10){strnew char[size];strcpy(str,"");cout<<"无参构造函数"<<endl;}//有参构造函数…

平衡二叉树删除结点后的调整操作

1.回顾插入操作 插入新结点后&#xff0c;要保持二叉排序树的特性不变&#xff08;左<中<右)若插入新结点导致不平衡&#xff0c;则需要调整平衡。 2.删除操作 删除结点后&#xff0c;要保持二叉排序树的特性不变&#xff08;左<中<右)若删除结点导致不平衡&…

C++---链表

1、链表 1.1、链表的结构 每个链表开头都有一个头指针Head尾节点的指针域为NULL&#xff0c;用于判断此列表是否结束 如果一个链表开始就为NULL&#xff0c;那么该链表为空链表 链表中的先后不代表在真实内存中的位置&#xff0c;只是单纯的逻辑上关系 1.2、创建链表 我们首…

网络编程 day1

1->x.mind网络编程基础 2->简述字节序的概念&#xff0c;并用共用体&#xff08;联合体&#xff09;的方式计算本机的字节序 1.字节序是指不同类型的CPU主机&#xff0c;内存存储多字节整数序列的方式 2.小端字节序&#xff1a;低序字节存储在低地址上 3.大端字节序&a…

定制化图标——Element UI 组件图标替换指南

本篇博客将介绍如何在使用 Element UI 组件时对原生图标进行定制化替换&#xff0c;提供了适用于满足个性化需求的方法和技巧。 引言 Element UI 是一款基于 Vue.js 的流行 UI 组件库&#xff0c;在前端开发中得到广泛应用。然而&#xff0c;在使用 Element UI 的组件时&#…

中小型教育机构这样做,让你轻松抓住受众注意力

教育一直都是家长对于孩子最关心的事情&#xff0c;对于部分家庭来说&#xff0c;教育支出占整个家庭支出的50%左右。 而软文作为目前效果比较明显而且性价高的推广方式&#xff0c;也很适合教育培训行业&#xff0c;因为它能让潜在客户可以清楚地了解产品的特性&#xff0c;感…

Java面试八股文宝典:初识数据结构-数组的应用扩展之HashMap

前言 除了基本的数组&#xff0c;还有其他高级的数据结构&#xff0c;用于更复杂的数据存储和检索需求。其中&#xff0c;HashMap 是 Java 集合框架中的一部分&#xff0c;用于存储键值对&#xff08;key-value pairs&#xff09;。HashMap 允许我们通过键来快速查找和检索值&…

004-Windows下开发环境搭建

Windows下开发环境搭建 文章目录 Windows下开发环境搭建项目介绍版本控制工具Git 与 SVNWindow下安装Git Qt 开发工具静态编译Qt环境安装 串口模拟器比较工具SQLite 数据库查看小工具预告 关键字&#xff1a; Qt、 Qml、 开发环境、 Windows、 C 项目介绍 欢迎来到我们的 …

数据库操作-DML/DQL

数据库操作-DML DML英文全称是Data Manipulation Language(数据操作语言)&#xff0c;用来对数据库中表的数据记录进行增、删、改操作。 添加数据&#xff08;INSERT&#xff09; 修改数据&#xff08;UPDATE&#xff09; 删除数据&#xff08;DELETE&#xff09; 增加(ins…

python 异常

1.捕获异常 2.密码爆破 3.

【业务功能118】微服务-springcloud-springboot-Kubernetes集群-k8s集群-KubeSphere-OpenELB部署及应用

OpenELB部署及应用 一、OpenELB介绍 网址&#xff1a; openelb.io OpenELB 是一个开源的云原生负载均衡器实现&#xff0c;可以在基于裸金属服务器、边缘以及虚拟化的 Kubernetes 环境中使用 LoadBalancer 类型的 Service 对外暴露服务。OpenELB 项目最初由 KubeSphere 社区发…

【Seata】05 - Seata Saga 模式简单整理、Docker 部署 Nacos 单机(基于 Jpom)相关配置

文章目录 前言参考目录Saga 模式知识点简单整理1、适用场景、优缺点2、Saga 模式的使用3、可能出现的问题以及解决方法 Docker 部署 Nacos 单机&#xff08;基于 Jpom&#xff09;步骤 1&#xff1a;拉取镜像步骤 2&#xff1a;构建容器步骤 3&#xff1a;Nacos 设置 Seata 配置…

自动化测试工具slelnium的初体验

1.slelnium介绍 1.1 一个Web的自动化测试工具&#xff0c;最初是为网站自动化测试而开发的。 1.2 可以直接运行在浏览器上&#xff0c;它支持所有主流的浏览器&#xff08;包括PhantomJS这些无界面的浏览器&#xff09;&#xff0c;可以接收指令&#xff0c;让浏览器自动加载页…

23062QTday2

完善登录框 点击登录按钮后&#xff0c;判断账号&#xff08;admin&#xff09;和密码&#xff08;123456&#xff09;是否一致&#xff0c;如果匹配失败&#xff0c;则弹出错误对话框&#xff0c;文本内容“账号密码不匹配&#xff0c;是否重新登录”&#xff0c;给定两个按钮…

ROS 入门

目录 简介 ROS诞生背景 ROS的设计目标 ROS与ROS2 安装ROS 1.配置ubuntu的软件和更新 2.设置安装源 3.设置key 4.安装 5.配置环境变量 安装可能出现的问题 安装构建依赖 卸载 ROS架构 1.设计者 2.维护者 3. 立足系统架构: ROS 可以划分为三层 ROS通信机制 话…

SQL中的PowerDesigner逐步深入提问,你能掌握多少?

你提到了有PowerDesigner操作经验&#xff0c;请解释一下PowerDesigner是什么&#xff0c;以及它在数据库设计和开发中的作用是什么&#xff1f; 标准回答&#xff1a; PowerDesigner是一种数据库建模和设计工具&#xff0c;它用于创建数据库模型、设计表结构、定义关系和生成…