北京大学快手发布统一的图文视频生成大模型Video-LaVIT

随着多模态大语言模型(LLMs)的新发展,人们越来越关注如何将它们从图像-文本数据扩展到更具信息量的真实世界视频。与静态图像相比,视频为有效的大规模预训练带来了独特的挑战,因为需要对其时空动态进行建模。

针对视频与语言联合预训练的挑战,文章提出了高效的视频分解方法,将视频表示为关键帧和时间运动,并设计分词器适配LLM,实现视频、图像和文本的统一生成预训练。应用时,生成的标记被恢复为像素空间,用于创建视频内容。框架表现出对图像和视频内容的理解和生成能力,具有竞争力的性能。
 

分享几个网站

GPT-3.5研究测试:
https://hujiaoai.cn

GPT-4研究测试:
https://higpt4.cn

Claude-3研究测试(全面吊打GPT-4):
https://hiclaude3.com

论文标题:
Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization

论文链接:
https://arxiv.org/pdf/2402.03161.pdf

项目链接:
https://video-lavit.github.io

视频理解的挑战:从静态图像到动态视频的转变

现有的多模态LLMs主要集中在图像-文本数据上,对于视频模态的适应性研究较少。视频理解的关键挑战在于如何有效地对视频的时空动态进行建模。传统的2D视觉编码器将视频帧单独编码,往往无法捕捉到视频内容中的时间运动信息,这些信息对于识别视频中的不同行为和事件至关重要。尽管最近的研究VideoPoet尝试通过3D视频编码器来处理视频生成,但其适用性受限于短视频片段,因为长序列的标记(例如,一个2.2秒的视频片段需要1280个标记)会导致计算资源的巨大消耗。

为了解决这些问题,本文提出了一种高效的视频表示方法,将视频分解为关键帧和时间运动,这种分解表示不仅减少了表示视频时空动态所需的标记数量,而且使模型能够继承现有图像LLM所学习的视觉知识,专注于建模时间信息,而无需从头开始学习。

图片

Video-LaVIT模型介绍

图片

1. 视频分解:关键帧与运动向量的提取

Video-LaVIT模型的核心在于将视频分解为关键帧和时间运动。视频通常被分为多个镜头,每个镜头内的视频帧往往存在大量的信息冗余。因此,将视频分解为交替的关键帧和运动向量,关键帧捕捉主要的视觉语义,而运动向量描述其对应关键帧随时间的动态演变。这种分解表示的好处在于,与使用3D编码器处理连续视频帧相比,单个关键帧和运动向量的组合需要更少的标记来表示视频的时空动态,这对于大规模预训练更为高效。

图片

2. 视频标记化:高效的视频内容表示

为了将连续的视频数据转换为紧凑的离散标记序列,Video-LaVIT设计了视频标记器。关键帧通过使用已建立的图像标记器进行处理,而时间运动的转换则通过设计一个时空运动编码器来实现。该编码器能够捕捉提取的运动向量中包含的随时间变化的上下文信息,从而显著提高LLMs理解视频中复杂动作的能力。

3. 视频去标记化:从离散标记到连续像素空间的映射

在推理阶段,LLMs生成的离散视频标记需要被精心恢复到原始的连续像素空间,以创建各种视频内容。Video-LaVIT的视频去标记器负责这一转换。考虑到直接从离散标记到高维视频空间的映射学习的挑战,采用了顺序解码策略,其中首先基于视觉标记恢复关键帧,然后通过将关键帧和运动标记作为条件来解码后续帧。这种策略在提高视频生成质量方面也得到了最近研究的验证。

多模态内容的联合自回归预训练

1. 图像理解任务的性能对比

在11个常用的图像和视频基准测试中,Video-LaVIT展示了其在多模态理解能力上的自然能力。特别是在图像理解方面,模型在八个广泛使用的图像问答和多模态基准测试中提供了最佳的整体性能。例如,在SQAI上,它比具有更高输入分辨率的LLaVA-1.5高出4.5%,同时在其他视频-语言模型上的表现也有超过3.5%的提升。这些优势在更全面的多模态基准测试中得到了进一步验证,其中该模型在四个基准测试中领先三个。

图片

2. 零样本视频问答的准确性

在三个常见的视频基准测试中,Video-LaVIT与多个最近的视频-语言模型进行了比较。在这三个基准测试中实现了最先进的准确性,并都展示了非常有竞争力的相对分数。例如,在MSVD-QA上,该方法超过了之前领先的模型Video-LLaVA 2.8%。通过明确建模时间动态与运动标记,尤其是在包含各种人类行为的ActivityNet-QA基准测试中,纳入运动信息有助于识别不同的动作。在MSRVTT-QA的相对分数方面,仅次于Video-LLaVA(差距0.2),再次确认了该方法的有效性。

图片

3. 文本到视频生成的竞争性能

通过统一的生成预训练,Video-LaVIT能够灵活地生成视频和图像。在文本到视频生成结果中,该模型在MSR-VTT和UCF-101上的表现显著优于大多数使用类似公共数据集训练的基线,并且与在更大专有数据上训练的模型高度竞争,例如在MSR-VTT上领先FVD。特别是与基于语言模型的文本到视频生成器相比,该方法一致超过CogVideo,同时超过了最近的同期工作VideoPoet,后者使用了更大的数据训练的3D视频分词器。这清楚地验证了分词器设计的优越性。

图片

图片

质量评估

1. 文本到图像生成的视觉质量

在图像理解方面,Video-LaVIT 在多个基准测试中表现出色。这一成果得益于其能够有效地利用从图像中学习到的视觉知识,并将其应用于视频内容的理解和生成。

2. 文本到视频生成的详细比较

在零样本视频问题回答方面,Video-LaVIT 在三个常用基准测试中均展现出最佳准确性。例如,使用GPT助手进行评估时,Video-LaVIT 在MSVD-QA基准测试中超越了之前领先的模型Video-LLaVA 2.8%的准确率。这一结果证明了Video-LaVIT 在理解视频内容方面的有效性。

3. 图像到视频生成的能力展示

在图像到视频的生成任务中,Video-LaVIT 展示了其强大的生成能力。通过将解耦的视觉-运动标记化和LLM预训练相结合,Video-LaVIT 能够生成具有自然和精细运动的视频片段。例如,在之前的研究中,与SVD的比较,Video-LaVIT 能够生成更复杂的动物运动,同时不违反物理规则。

图片

4. 长视频生成的时间一致性

Video-LaVIT 通过在解码连续视频片段时明确约束噪声,能够在长视频生成中提供高度的时间一致性。例如,在生成一个围绕“一艘在加勒比海水晶般清澈的水面上优雅航行的豪华游艇”的360度视频时,通过使用噪声约束,Video-LaVIT 能够改善不同片段之间的时间一致性。

图片

结论与展望

1. 模型潜力

Video-LaVIT的设计理念为未来的研究提供了新的方向:

  • 通过对视频进行高效的分解和重新组合,该模型能够在保持高效性的同时,捕捉到视频内容的丰富动态信息。这一点对于提升机器对现实世界动态场景的理解至关重要。

  • 该模型的成功也展示了大语言模型在多模态学习领域的巨大潜力,尤其是在处理更为复杂的视频数据时。

  • Video-LaVIT在无需特定任务微调的情况下,就能在多个基准测试中取得竞争性能,这进一步证明了其作为多模态通用模型的潜力。

2. 面临的挑战

尽管Video-LaVIT展现出了巨大的潜力,但在其发展道路上仍然存在一些挑战:

  • 尽管通过视频分解能够有效减少模型处理的数据量,但对于极长视频的处理仍然是一个挑战,因为模型的上下文窗口大小有限。

  • 运动向量的分辨率可能限制了模型在捕捉极其细微动作时的能力。此外,尽管Video-LaVIT在训练时的计算效率已经有所提高,但要将其扩展到网络规模的视频数据上,仍然需要进一步的优化。

  • 如何进一步提升模型在理解和生成长视频内容时的连贯性和一致性,也是未来研究需要关注的问题。

Video-LaVIT的出现为多模态人工智能领域的发展注入了新的活力,预示着未来在更加自然和直观的人机交互方式方面的巨大潜力。随着技术的进步和研究的深入,Video-LaVIT及其后续版本将在多模态人工智能领域扮演越来越重要的角色。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/819068.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JavaEE初阶系列】——网络原理之进一步了解应用层以及传输层的UDP协议

目录 🚩进一步讲应用层 🎈自定义应用层协议 🎈用什么格式组织 👩🏻‍💻xml(远古的数据组织格式) 👩🏻‍💻json(当下最流行得一种数据组织格式) 👩&…

[lesson31]完善的复数类

完善的复数类 完善的复数类 复数类应该具有的操作 运算:,-,*,/比较:,!赋值:求模:modulus 利用操作符重载 统一复数与实数的运算方式统一复数与实数的比较方式 注意事项 C规定赋…

【max材质addtive叠加模式特效渲染不出通道的解决办法】

max材质addtive叠加模式特效渲染不出通道的解决办法 2021-12-22 18:15 max的scanline扫描线,vray渲染可以,红移不行(只支持它自己的材质,它自己的材质没有additive模式)。据说mr是可以的。 右侧的球体使用附加不透明度。 附加不透明度通过将…

C++内存管理与模版(用法详解)

C/C中程序内存区域划分 内核空间(用户代码不能读写)栈(函数中存放的变量)内存映射段堆(重点)数据段(静态区)全局变量 / 静态变量代码段(常量区) 试分析下列…

Opencv3.4+FFMpeg3.4+pkg-config交叉编译arm开发板

Ubuntu16.04 64位 FFmpeg3.4 OpenCv3.4 一、下载FFmpeg https://github.com/FFmpeg/FFmpeg 1.配置 ./configure --prefix/home/zeng/ffmpeg_install --enable-cross-compile --cross-prefixarm-linux-gnueabihf- --ccarm-linux-gnueabihf-gcc --target-oslinux --cpuco…

负载均衡器如何工作,为什么如此重要?

现代应用程序和网站处理大量流量。负载均衡器是保证大型系统平稳运行的主要工具之一。 负载平衡器负责跨多个服务器路由客户端请求以分配负载并防止出现瓶颈。 这有助于最大限度地提高吞吐量、减少响应时间并优化资源使用。 负载均衡器的运行情况: (1).客户端请…

阿姨吐槽年轻人卧铺挂帘子不让坐 评论区吵翻天了

近日,网络流传的一段短视频激起了公众的广泛热议。 这段视频展现了一位阿姨与在下铺挂帘子的年轻人之间的冲突。 视频中,阿姨情绪激动,她用镜头对准了那位年轻人,指责他在下铺挂帘子,使得一位70岁的老人无法坐下。 阿姨…

EasyRecovery数据恢复软件2024免费版下载亲测可用(支持win7,win10)

EasyRecovery数据恢复软件是由全球著名的数据恢复公司Ontrack出品的一款专业级数据文件恢复工具。它支持恢复多种存储介质上的数据,包括硬盘、光盘、U盘/移动硬盘、数码相机以及Raid文件恢复等,能恢复的文件类型也相当丰富,包括文档、表格、图…

磁盘管理和文件系统

一.磁盘基础 1.磁盘结构 (1)物理结构: 盘片:硬盘有多个盘片,每盘片2面 磁头:每面一个磁头 (2)硬盘的数据结构 扇区:盘片被分为多个扇形区域,每个扇区存…

Django之rest_framework(四)

扩展的视图类介绍 rest_framework提供了几种后端视图(对数据资源进行增删改查)处理流程的实现,如果需要编写的视图属于这几种,则视图可以通过继承相应的扩展类来复用代码,减少自己编写的代码量 官网:3 - Class based views - Django REST framework rest_framework.mixi…

冯喜运:4.16市场洞察:中东风暴搅动汇市,现货黄金原油走势分析

【黄金消息面分析 】周一(4月15日),欧洲时段黄金价格已经从高点回落,目前交投于2351.52美元/盎司,稍早曾短暂攀至2372美元,未能重现上周收盘时触及的2431美元高位。定于周一晚些时候公布的美国3月零售销售数据也可能对美元汇率产生…

2024 EasyRecovery三分钟帮你恢复 电脑硬盘格式化

随着数字化时代的到来,我们的生活和工作中越来越依赖于电子设备。然而,电子设备中的数据丢失问题也随之而来。数据丢失可能是由各种原因引起的,如硬盘故障、病毒感染、误删除等。面对这种情况,一个高效、可靠的数据恢复工具变得尤…

轻量级的Spring Cloud Gateway实践,实现api和websocket转发

当国内大部分都是粘贴复制一些重型框架时,有没有人会想到,我们自己做一个小项目,几个小的Spring boot的项目时,我们是否还需要按部就班的用我们公司中用到的Nacos,这种冗余且调配复杂的组件呢? 不是本人说…

华为HarmonyOS 4.2公测升级计划扩展至15款新机型

华为近日宣布,HarmonyOS 4.2操作系统的公测升级计划将扩展到包括华为P50系列在内的15款设备。这一更新旨在为用户提供更优化的系统性能和增强的功能。 参与此次公测的机型包括华为P50、华为P50 Pro及其典藏版、华为P50E、华为P50 Pocket及其艺术定制版、华为nova系…

计算机笔记(11)续20个

180.时钟频率2.0GHz表示一秒有2*10的9次方个时钟周期,若执行一条指令需要2个时钟周期,则每秒执行的指令数为2*10的9次方/21*10的9次方 181.同轴电缆粗缆采用AUI头作为连接器件 182. 183.win7中的回收站,存放的是硬盘上被删除的…

【多线程】单例模式 | 饿汉模式 | 懒汉模式 | 指令重排序问题

文章目录 单例模式一、单例模式1.饿汉模式2.懒汉模式(单线程)3.懒汉模式(多线程)改进 4.指令重排序1.概念2.question:3.解决方法4总结: 单例模式 一、单例模式 单例,就是单个实例 在有些场景中&#xff0c…

Adobe Premiere 2020 下载地址及安装教程

Premiere是一款专业的视频编辑软件,由Adobe Systems开发。它为用户提供了丰富的视频编辑工具和创意效果,可用于电影、电视节目、广告和其他多媒体项目的制作。 Premiere具有直观的用户界面和强大的功能,使得编辑和处理视频变得简单而高效。它…

【高阶数据结构】哈希表 {哈希函数和哈希冲突;哈希冲突的解决方案:开放地址法,拉链法;红黑树结构 VS 哈希结构}

一、哈希表的概念 顺序结构以及平衡树 顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系。因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N);平衡树中为树的高度,即O(log_2 N)&#xf…

Neo4j 图形数据库中有哪些构建块?

Neo4j 图形数据库具有以下构建块 - 节点属性关系标签数据浏览器 节点 节点是 Graph 的基本单位。 它包含具有键值对的属性,如下图所示。 NEmployee 节点 在这里,节点 Name "Employee" ,它包含一组属性作为键值对。 属性 属性是…

dcoker+nginx解决前端本地开发跨域

步骤 docker 拉取nginx镜像跑容器 并配置数据卷nginx.conf nginx.conf文件配置 这里展示server server {listen 80;listen [::]:80;server_name localhost;#access_log /var/log/nginx/host.access.log main;location / {# 当我们访问127.0.0.1:8028就会跳转到ht…