【C++初阶】动态内存管理

在这里插入图片描述

​👻内容专栏: C/C++编程
🐨本文概括: C/C++内存分布、C语言动态内存管理、C++动态内存管理、operator new与operator delete函数、new和delete的实现原理、定位new表达式、常见面试问题等。
🐼本文作者: 阿四啊
🐸发布时间:2023.9.18

C/C++中内存分布

C/C++程序在运行时会在计算机的内存中分配不同区域来存储不同类型的数据和指令。一般来说,可以将内存布局分为以下几个主要部分:

内核空间:通常是不可访问的,用于存储操作系统和内核的数据结构。
栈区域:存储非静态的局部变量、函数参数和返回值、函数地址等。
内存映射段:用来映射文件到内存,允许像访问内存一样访问文件。
堆区域:用户可以通过malloc(在C中)或new(在C++中)来手动分配内存,需要手动释放
数据段:存储全局数据、静态变量、常量。
代码段:存储可执行代码和只读常量。

在这里插入图片描述
来测验一下C语言学习时期的对内存分布的理解情况:

int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{static int staticVar = 1;int localVar = 1;int num1[10] = { 1, 2, 3, 4 };char char2[] = "abcd";const char* pChar3 = "abcd";int* ptr1 = (int*)malloc(sizeof(int) * 4);int* ptr2 = (int*)calloc(4, sizeof(int));int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);free(ptr1);free(ptr3);
}
  • ①选择:
    选项:A.栈 B.堆 C.数据段(静态区) D.代码段(常量区)
    (1)globalVar在哪里?____ (2)staticGlobalVar在哪里?____
    (3)staticVar在哪里?____ (4)localVar在哪里?____
    (5)num1 在哪里?____

    (6)char2在哪里?____ (7)*char2在哪里?____
    (8)pChar3在哪里?____ (9)*pChar3在哪里?_____
    (10)ptr1在哪里?____ (11) *ptr1在哪里?_____

  • ②填空:(1)sizeof(num1) = ____
    (2)sizeof(char2) = ____; (3)strlen(char2) = ____;
    (4)sizeof(pChar3) = ____;(5) strlen(pChar3) = ____;
    (6)sizeof(ptr1) = ____;

    答案:选择:1~5:CCCAA 6~11:AAADAB
    填空:1.40   2.5   3.4   4.4/8   5.4   6.4/8
    

C语言中动态内存管理方式

动态内存分配函数:mallocrealloccalloc
malloc:向内存申请一块连续可用的空间,并返回指向这块空间的指针。

calloc:为 num 个大小为 size 的元素开辟一块空间,并且把空间的每个字节初始化为0。

realloc:对动态开辟内存大小的调整。

  • realloc在调整内存空间的是存在两种情况:
    • 原有空间之后有足够大的空间(原地扩容)
    • 原有空间之后没有足够大的空间(异地扩容)
      在这里插入图片描述

知识点回顾:

void Test ()
{int* p1 = (int*) malloc(sizeof(int));free(p1);// 1.malloc/calloc/realloc的区别是什么?int* p2 = (int*)calloc(4, sizeof (int));int* p3 = (int*)realloc(p2, sizeof(int)*10);// 这里不需要free(p2) 如果释放就会对空间释放两次free(p3 );
}

C++动态内存管理方式

C语言内存管理方式在C++中可以继续沿用,但是在一些情况之下,C++祖师爷考虑到C语言的动态内存管理方式觉得并不妥当,于是提出了C++自己的动态内存管理方式:newdelete 操作符。

new/delete操作内置类型

其用法介绍如下:

int main()
{//申请一个int类型大小的空间int* p1 = new int;//申请10个int类型大小的空间int* p2 = new int[10];//申请一个int类型大小的空间,并初始化为1。int* p3 = new int(1);//申请10个int类型大小的空间,初始化前4个元素,其余元素默认初始化为0int* p4 = new int[10]{ 1,2,3,4 };//释放p1/p2/p3地址处的空间delete p1;delete p2;delete p3;//释放p4地址处连续的空间delete[] p4;return 0;
}

⚠️注意:申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用
new[]和delete[],需要匹配起来使用。

new和delete操作自定义类型

class A
{
public:A(int a = 0): _a(a){cout << "A():" << this << endl;
}
~A()
{cout << "~A():" << this << endl;
}
private:int _a;
};
int main()
{// new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间//还会自动调用构造函数和析构函数A* p1 = (A*)malloc(sizeof(A));A* p2 = new A(1);free(p1);delete p2;A* p5 = (A*)malloc(sizeof(A)*10);A* p6 = new A[10];free(p5);delete[] p6;return 0;
}

⚠️注意:在申请自定义类型的空间时,new会自动调用构造函数,delete会自动调用析构函数,而malloc与free不会。

抛异常

我们在C语言中进行动态内存申请失败时,会返回一个空指针(NULL),那么,在C++中,用new申请内存失败会有一个抛异常操作。
我们可以使用try-catch进行捕获异常。而不需要像C语言那样进行手动检查。
语法格式:

try {// 可能抛出异常的代码块
}
catch (ExceptionType1 e1) {// 处理 ExceptionType1 类型的异常
}

示例:

#include <iostream>
using namespace std;
int main()
{try{char* ch = new char[0x7fffffff];}catch (const exception& e){cout << e.what() << endl;}return 0;
}

简单来说,try所在区域里面的动态内存空间申请失败,会跳至catch所在的代码块中(类似于goto语句),然后报出所对应的错误信息bad_alloc,若内存申请成功,则不会执行catch所在内存块里面的语句,这里简单理解一下就行,后面进阶部分,会细致讲解此语法。

operator new与operator delete函数

operator newoperator delete是系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间。

/*
operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间
失败,尝试执行空 间不足应对措施,如果改应对措施用户设置了,则继续申请,否
则抛异常。
*/
void *__CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{// try to allocate size bytesvoid *p;while ((p = malloc(size)) == 0)if (_callnewh(size) == 0){// report no memory// 如果申请内存失败了,这里会抛出bad_alloc 类型异常static const std::bad_alloc nomem;_RAISE(nomem);}return (p);
}
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void *pUserData)
{_CrtMemBlockHeader * pHead;RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));if (pUserData == NULL)return;_mlock(_HEAP_LOCK); /* block other threads */__TRY/* get a pointer to memory block header */pHead = pHdr(pUserData);/* verify block type */_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));_free_dbg( pUserData, pHead->nBlockUse );__FINALLY_munlock(_HEAP_LOCK); /* release other threads */__END_TRY_FINALLY
return;
}
/*free的实现*/
#define free(p) _free_dbg(p, _NORMAL_BLOCK)

反汇编代码演示

我们还是以往写的stack的代码为例。
在这里插入图片描述
在这里插入图片描述

我们可以将operator new 和operator delete 显式的写出来,调试转为反汇编代码观察,他们两个只调用了底层的operator new和operator delete 函数。

在这里插入图片描述
在这里插入图片描述

而对于new,其实在底层不光调用了operator new函数,也调用了stack自身的构造函数,对于delete,在底层不光调用了operator delete函数,也调用了stack自身的析构函数!

new 和delete的实现原理

内置类型

如果申请的是内置类型的空间,newmallocdeletefree基本类似,不同的地方是:new/delete申请和释放的是单个元素的空间,new[]delete[]申请和释放的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。

自定义类型

  • new的原理
    1. 调用operator new函数申请空间。
    2. 在申请的空间上执行构造函数,完成对象的构造。
  • delete的原理
    1. 在空间上执行析构函数,完成对象中资源的清理工作。
    2. 调用operator delete函数释放对象的空间。
  • new []的原理
    1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请。
    2. 在申请的空间上执行N次构造函数
  • delete[] 的原理
    1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
    2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释
      放空间

free、delete和delete[]

😉思考:free、delete、delete[]能不能混用呢?

场景一:

我们简单手写一个A类,用new去申请一段连续的内存空间,最后分别用freedeletedelete[]三种方式去释放,都能运行成功,所以我们对申请的内存空间进行释放,可以随意用freedeletedelete[]都可以吗?

class A
{
public:A(int a = 1):_a(a){cout << "A()" << endl;}private:int _a;
};int main()
{A* p = new A[10];free(p);//运行成功//delete p;//运行成功//delete[] p;//运行成功return 0;
}

场景二:

下面我们在A类中显式的写了析构函数,并且打印析构函数名,我们去运行这段代码,发现用freedelete均会出现程序崩溃,最后用delete[]去释放才能运行成功,那么是什么原因呢?

class A
{
public:A(int a = 1):_a(a){cout << "A()" << endl;}~A(){cout << "~A()" << endl;}private:int _a;
};int main()
{A* p = new A[10];//free(p);//崩溃//delete p;//崩溃delete[] p;//运行成功return 0;
}

说明:是因为没有调用析构函数吗?其实不是的,大家可以试一下我们刚写的stack这样的类,不进行释放,也就是没有调用析构函数是不会报错的,顶多出现内存泄露问题。
为了证明以上问题,vs2019的编译器封装性太全了,观察不到其operator delete函数,所以,根据如下的图中解释,这里大家只需要记住此“规则”。
在这里插入图片描述
那么场景一该怎么解释呢?其实是因为我们没有写析构函数,此时是编译器做了一些优化和检查,编译器觉得析构函数没有什么事情需要做,于是觉得没有必要指向p2的位置(甚至是没有开辟一个int大小的空间的,这取决于编译器的行为),所以释放的位置也是从p1的位置进行释放,所以利用三种方式释放并没有报出错误。

结论

通过以上场景我们发现,申请内存空间与释放空间不匹配是未定义的行为,所以申请空间是用什么操作符,释放空间就应该对应着匹配使用!!!

定位new表达式(placement-new)

operator new开辟一段stack空间,这里的pst指向的只不过和stack是相同大小的空间,还不能算作是一个对象,因为并没有执行构造函数。那么是否可以直接显式地调用构造函数呢?答案是不可以的,因为语法不允许,只能够显式地调用析构函数。

于是,便有了定位new表达式(placement-new)的概念。
定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。

  1. 使用格式:new (place_address) type或者new (place_address) type(initializer-list)
    place_address必须是一个指针,initializer-list是类型的初始化列表。

下面是一段定位new配合operator new使用的代码,可以理解为等同于new,因为上面我们验证过new在底层是operator new加上对应的构造函数。
pst->~stack()operator delete可以理解为等同于delete

int main()
{stack* pst = (stack*)operator new(sizeof(stack));//等价于pst->stack(); //实际不能显式地调用构造函数new(pst)stack(20);//构造函数有参数,需要进行传参//只能够显式地调用析构函数pst->~stack();operator delete(pst);return 0;
}
  1. 使用场景:定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如果是自定义类型的对象,需要使用new的定义表达式进行显式调构造函数进行初始化。

常见面试题

malloc/free和new/delete的区别

malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地
方是:

  1. malloc和free是函数,new和delete是操作符。
  2. malloc申请的空间不会初始化,new可以初始化。
  3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可,如果是多个对象,[]中指定对象个数即可。
  4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型。
  5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需要捕获异常。
  6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理。

什么是内存泄露?内存泄露的危害

什么是内存泄漏:内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内
存泄漏并不是指内存在物理上的消失,而是应用程序分配某段内存后,因为设计错误,失去了对该段内存的控制,因而造成了内存的浪费。
内存泄漏的危害:长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务等等,出现
内存泄漏会导致响应越来越慢,最终卡死。

如何规避内存泄露?

  1. 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps:
    这个理想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下一条智
    能指针来管理才有保证。
  2. 采用RAII思想或者智能指针来管理资源。
  3. 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。
  4. 出问题了使用内存泄漏工具检测。ps:不过很多工具都不够靠谱,或者收费昂贵。

内存泄漏非常常见,解决方案分为两种:1、事前预防型。如智能指针等。2、事后查错型。如泄
漏检测工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/81751.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSRF和SSRF有什么不同?

文章目录 CSRF复现SSRF复现启动环境漏洞复现探测存活IP和端口服务计划任务反弹shell 区别 CSRF复现 打开dvwa&#xff0c;将难度调为low&#xff0c;点击CSRF&#xff0c;打开后发现有一个修改密码的输入框&#xff1a; 在这里修改密码&#xff0c;并用bp抓包&#xff0c;在…

C++实现观察者模式(包含源码)

文章目录 观察者模式一、基本概念二、实现方式三、角色四、过程五、结构图六、构建思路七、完整代码 观察者模式 一、基本概念 观察者模式&#xff08;又被称为模型&#xff08;Model&#xff09;-视图&#xff08;View&#xff09;模式&#xff09;是软件设计模式的一种。在…

开启编程之门

自我介绍 目前已经大二了&#xff0c;计算机专业在读&#xff0c;是一个热爱编程&#xff0c;做事踏实专注的人。转眼间一年已经过去了&#xff0c;也接触编程一年了&#xff0c;但开始并没有对所学所想进行很好的总结和输出&#xff0c;这一年也有了新的很多感悟与心得&#x…

浅谈双十一背后的支付宝LDC架构和其CAP分析

本人汤波&#xff0c;superthem.com 圆领超级个体创始人&#xff0c;Github page地址&#xff1a;https://tbwork.github.io/ 看到很多人在盗用我的文章&#xff0c;还标记成原创&#xff0c;进行收费&#xff0c;非常令人作呕。 我的所有技术文章全部免费阅读&#xff0c;大家…

PCB走线规则

1、线间距。 这里应该遵循3W规则&#xff0c;所谓3W就是为了减少线间串扰&#xff0c;应保证线间距足够大&#xff0c;当线中心不少于3倍线宽&#xff0c;则可 保持70%的电场不互相干扰。如要达到98%的电场不互相干扰&#xff0c;可使用10W的间距。——这是查阅华为PCB布线规则…

npm 清缓存(重新安装node-modules)

安装node依赖包的会出现失败的情况&#xff0c;如下图所示&#xff1a; 此时 提示有些依赖树有冲突&#xff0c;根据提示 “ this command with --force or --legacy-peer-deps” 执行命令即可。 具体步骤如下&#xff1a; 1、先删除本地node-modules包 2、删掉page-loacl…

el-upload 上传附件(拆解步骤)

目录 1. 看elementui /element-plus 官网案例 2. html部分&#xff1a; 把官网上的搬下来&#xff0c;最好加一个按钮&#xff0c;上传到服务器&#xff08;后端&#xff09; 3. js 部分&#xff1a; 3.1 首先&#xff0c;先定义一个变量&#xff0c;files 3.2 当上传图片…

机器学习(11)---降维PCA

目录 一、概述1.1 维度1.2 sklearn中的降维算法 二、降维实现原理2.1 PCA与SVD2.2 降维实现2.3 降维过程 三、鸢尾花数据集降维3.1 高维数据的可视化3.2 探索降维后的数据3.3 累积可解释方差贡献率曲线 四、选n_components参数方法4.1 最大似然估计自选超参数4.2 按信息量占比选…

WavJourney:进入音频故事情节生成世界的旅程

推荐&#xff1a;使用 NSDT场景编辑器快速搭建3D应用场景 若要正确查看音频生成的强大功能&#xff0c;请考虑以下方案。我们只需要提供一个简单的指令&#xff0c;描述场景和场景设置&#xff0c;模型就会生成一个扣人心弦的音频脚本&#xff0c;突出与原始指令的最高上下文相…

数组和指针笔试题解析之【数组】

目录 前言&#xff1a; 1.一维数组&#xff1a; 2.字符数组 &#xff1a; 2.1题型一&#xff1a; 2.2题型二&#xff1a; 2.3题型三&#xff1a; 3.二维数组 &#xff1a; 前言&#xff1a; 1.数组名的意义&#xff1a; sizeof(数组名)&#xff1a;这里的数组名表示整…

【C++STL基础入门】list的运算符重载和关于list的算法

文章目录 前言一、list运算符1.1 逻辑运算符1.2 赋值运算符 二、list相关算法2.1 查找函数总结 前言 C标准模板库&#xff08;STL&#xff09;是一组强大而灵活的工具&#xff0c;用于处理数据结构和算法。其中&#xff0c;std::list是STL中的一个重要容器&#xff0c;它实现了…

小型网络实验组网

路漫漫其修远兮&#xff0c;吾将上下而求索 时隔多日&#xff0c;没有更新&#xff0c;今日一写&#xff0c;倍感教育的乐趣。如果让我每天发无意义的文章&#xff0c;我宁可不发。 实验拓扑 实验要求 &#xff08;1&#xff09;内网主机采用DHCP分配IP地址 &#xff08;2&…

记录本地Nginx发布vue项目

一、前端&#xff1a;vue-cli-service build 二、下载Nginx&#xff0c;并创建目录&#xff0c;放置静态文件 三、在conf目录下nginx.conf文件配置代理服务 server {listen 8787;server_name localhost;location / {root app/dist; #前端dist包地址index index.html…

Tomcat架构设计及组件详解

继Tomcat配置详解&#xff08;Tomcat配置server.xml详解&#xff09;Tomcat配置详解&#xff08;Tomcat配置server.xml详解&#xff09;_tomcat xml配置https://blog.csdn.net/imwucx/article/details/132166738文章之后&#xff0c;深入的学习tomcat相关知识&#xff0c;对Tom…

基于SSM+Vue的“魅力”繁峙宣传网站

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用Vue技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

数据分享|R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病...

全文链接&#xff1a;http://tecdat.cn/?p23061 这个数据集&#xff08;查看文末了解数据免费获取方式&#xff09;可以追溯到1988年&#xff0c;由四个数据库组成。克利夫兰、匈牙利、瑞士和长滩。"目标 "字段是指病人是否有心脏病。它的数值为整数&#xff0c;0无…

无代码和低代码平台:程序员的竞争优势

无代码和低代码平台&#xff1a;程序员的竞争优势 无代码和低代码平台&#xff1a;程序员的竞争优势摘要引言1. 了解无代码和低代码平台1.1 无代码和低代码平台的定义无代码平台低代码平台 1.2 它们如何简化应用程序开发1.3 主要的无代码和低代码工具和供应商无代码平台低代码…

【八大经典排序算法】堆排序

【八大经典排序算法】堆排序 一、概述二、思路解读三、代码实现&#xff08;大堆为例&#xff09; 一、概述 堆排序是J.W.J. Williams于1964年提出的。他提出了一种利用堆的数据结构进行排序的算法&#xff0c;并将其称为堆排序。堆排序是基于选择排序的一种改进&#xff0c;通…

蓝牙核心规范(V5.4)10.1-BLE 入门笔记(1)

ble 规范 深入了解蓝牙LE需要熟悉相关的规格。蓝牙LE的架构、程序和协议由一项关键规范完全定义,称为蓝牙核心规范。产品如何使用蓝牙以实现互操作性由两种特殊类型称为配置文件和服务的规范集合所涵盖。图1展示了BLE规范类型及其相互关系。 1.1 蓝牙核心规范 蓝牙核心规范是…

SpringBoot整合Easy-ES实现对ES操作

请确保已有可用的ES&#xff0c;若没有&#xff0c;请移步&#xff1a;Docker安装部署ElasticSearch&#xff08;ES&#xff09; 新建SpringBoot项目 这里是用的springboot版本是2.6.0 引入依赖 <!-- 排除springboot中内置的es依赖,以防和easy-es中的依赖冲突--><…