【机器学习】数学基础详解

线性代数:构建数据的骨架

数学对象

标量(Scalar)

标量是最基本的数学对象,代表了单个的数值,无论是整数还是实数。在机器学习中,标量可以用来表示一个模型的单个参数,如偏差(bias)项。

向量(Vector)

向量是标量的直接扩展,表示由多个标量组成的有序集合。在数据科学中,一个实例或数据点的特征通常以向量的形式出现,其中每个元素代表一个特征。

矩阵(Matrix)

矩阵是二维数组,它扩展了向量的概念,允许我们同时操作多个数据点。在机器学习中,矩阵经常用于表示整个数据集,其中每行代表一个数据点,每列代表一种特征。

张量(Tensor)

张量是更高维度的数组,广泛应用于深度学习。例如,在处理图像数据时,一个彩色图像可以表示为一个3D张量,维度分别对应于图像的高度、宽度和颜色通道。

简单运算

矩阵转置(Matrix Transpose)

矩阵转置是将矩阵的行列互换的操作,是许多线性代数运算的基础。

矩阵求逆(Matrix Inversion)

矩阵求逆是找到一个矩阵,使得当它与原矩阵相乘时,结果为单位矩阵。矩阵求逆在理论上非常重要,尤其是在求解线性系统时。

矩阵乘法(Matrix Multiplication)

矩阵乘法是线性代数中最核心的运算之一,允许我们组合和转换数据集。它是定义线性变换的基础,也是深度学习中神经网络层之间传递信息的方式。

范数(Norm)

L_pLp​ 范数

L_pLp​ 范数是向量元素绝对值的p次方和的p次根。特别地,L_1L1​ 范数和L_2L2​ 范数在机器学习中广泛用于正则化,以避免过拟合。

概率论:不确定性的语言

随机变量

离散和连续

随机变量可以是离散的,取有限或可数无限多个值;或者是连续的,取值于某个区间内的所有实数。离散随机变量的例子包括掷硬币的结果,连续随机变量的例子包括测量的身高。

概率分布

PMF 和 PDF

离散随机变量的概率分布可以通过概率质量函数(PMF)描述,而连续随机变量的概率分布可以通过概率密度函数(PDF)描述。

边缘概率分布(Marginal Probability Distribution)

边缘概率描述了忽略其他变量后,单个随机变量的概率分布。

条件概率(Conditional Probability)

条件概率表示在给定一个事件发生的条件下,另一个事件发生的概率。

独立和条件独立

两个事件的独立意味着一个事件的发生不影响另一个事件的发生概率。条件独立则是在给定第三个事件的情况下,两个事件互不影响。

期望、方差和协方差

  • **期望(Expectation)**表示随机变量的平均值。
  • **方差(Variance)**衡量随机变量的波动大小。

  • **协方差(Covariance)**衡量两个随机变量同时变化的趋势。

常见的概率分布

包括伯努利分布、二项分布、正态分布等,每种分布都有其特定的应用场景。

贝叶斯定理(Bayes' Theorem)

贝叶斯定理提供了一种在已知某些其他条件下,事件概率如何转换的方法。它是现代机器学习中不可或缺的工具,尤其在贝叶斯网络和贝叶斯推断中。

优化:寻找最佳解

梯度下降(Gradient Descent)

梯度下降是一种寻找函数最小值的方法,通过计算函数的梯度并沿着梯度的反方向更新参数来逐步逼近最小值点。

临界点(Critical Points)

临界点是函数梯度为零的点,可以是局部最小值、局部最大值或鞍点。

微积分运算法则

微积分运算法则,包括链式法则、乘法法则和除法法则,是计算梯度下降法中梯度以及在更复杂优化问题中应用微积分的基础。

微积分运算法则在优化中的应用

微积分,特别是导数和偏导数,是理解和实施优化算法的基础。在机器学习中,我们通常需要最小化或最大化某个函数,例如损失函数或目标函数。要做到这一点,我们需要计算函数相对于其参数的梯度,即需要知道如何有效地应用微积分运算法则。

链式法则

链式法则是微积分中的一项关键法则,它允许我们计算复合函数的导数。在机器学习的背景下,这是反向传播算法的基础,后者是训练深度神经网络的主要方法。通过链式法则,我们可以将复杂模型的梯度分解为较简单函数梯度的乘积,从而有效地计算出梯度来更新模型参数。

乘法法则和除法法则

乘法法则和除法法则提供了计算两个函数相乘或相除的导数的方法。这在处理包含多个项相乘或相除的损失函数时非常有用。例如,在正则化项被添加到损失函数中时,可能需要应用这些法则来正确计算梯度。

优化技术的进阶主题

机器学习中的优化不仅仅局限于梯度下降和其变体。存在一系列高级技术,可以帮助更有效地解决优化问题。

动量和自适应学习率方法

动量方法借鉴了物理学中的概念,通过考虑之前梯度的累积来加速学习。自适应学习率方法(如Adam和RMSprop)则通过自动调整学习率来解决梯度下降中的一些常见问题,如学习率选择和梯度消失。

临界点的辨识与处理

识别函数的临界点是优化中的一个重要方面。在实践中,我们需要区分这些临界点是局部最小值、局部最大值还是鞍点,并采取策略避免陷入次优解。高级优化技术,如二阶方法,可以提供关于临界点性质的更多信息,但计算成本也更高。

结合理论与实践

机器学习中的优化是一个动态平衡的过程,涉及理论知识和实践技能的结合。理解线性代数、概率论和微积分的基础原理是构建有效模型的关键。同时,掌握各种优化技术和算法,能够让我们在实际问题中找到最佳解。

优化不仅仅是找到任何解,而是要找到在给定数据和约束条件下的最佳解。这要求我们深入理解模型的工作原理,以及如何通过优化算法调整模型参数以达到最佳性能。

在不断发展的机器学习领域,新的理论和技术不断涌现。保持对基础数学原理的坚实理解,同时紧跟最新的研究和技术发展,是每一个机器学习从业者和研究者的必备素质。

通过上述讨论,我们深入探讨了线性代数、概率论和优化这三个机器学习的核心数学基础,以及它们如何相互作用来支持和推动机器学习模型的开发和优化。理解这些概念为在这一激动人心的领域内进行创新和实践提供了坚实的基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/815628.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何更好地理解 Vue 3 watch 侦听器的用法

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

分类预测 | Matlab实现RIME-LSSVM霜冰算法优化最小二乘支持向量机数据分类预测

分类预测 | Matlab实现RIME-LSSVM霜冰算法优化最小二乘支持向量机数据分类预测 目录 分类预测 | Matlab实现RIME-LSSVM霜冰算法优化最小二乘支持向量机数据分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.Matlab实现RIME-LSSVM霜冰算法优化最小二乘支持向量机数…

【C++庖丁解牛】哈希表/散列表的设计原理 | 哈希函数

🍁你好,我是 RO-BERRY 📗 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 🎄感谢你的陪伴与支持 ,故事既有了开头,就要画上一个完美的句号,让我们一起加油 目录 前言1.哈希概念2.哈希冲突…

java项目实战之图书管理系统(1)

✅作者简介:大家好,我是再无B~U~G,一个想要与大家共同进步的男人😉😉 🍎个人主页:再无B~U~G-CSDN博客 1.背景 图书管理系统是一种用于管理图书…

基于springboot的网上订餐管理系统

前言 本次毕业设计的题目就是基于Java的网上订餐管理系统。本论文就毕业设计的容,系统地阐述了整个基于Java的网上订餐管理系统的功能与实现。实现了从菜品管理,菜品分类和查询,到订餐车实现,用户订单处理,再到系统管…

ERROR 1052 (23000): Column ‘deptno‘ in field list is ambiguous

错误原因: 这个错误通常是在多表查询中,因为你的SQL查询中包含了多个表,并且这些表中都有一个名为deptno的列。这会导致数据库无法确定你要引用哪个表中的 deptno列,从而产生歧义。 解决方法: 为了解决这个问…

JVM虚拟机(三)垃圾回收简介、垃圾回收算法、分代回收、垃圾回收器种类、G1垃圾回收器

目录 一、什么是垃圾回收?1.1 什么是垃圾回收?1.2 什么对象能被垃圾回收?1)引用计数法2)可达性分析算法 二、JVM 垃圾回收算法2.1 标记清除算法2.2 标记整理算法(标记压缩算法)2.3 复制算法2.4 …

python基于opencv实现数籽粒

千粒重是一个重要的农艺性状,通过对其的测量和研究,我们可以更好地理解作物的生长状况,优化农业生产,提高作物产量和品质。但数籽粒数目是一个很繁琐和痛苦的过程,我们现在用一个简单的python程序来数水稻籽粒。代码的…

鸿蒙语言TypeScript学习第16天:【类】

1、TypeScript 类 TypeScript 是面向对象的 JavaScript。 类描述了所创建的对象共同的属性和方法。 TypeScript 支持面向对象的所有特性,比如 类、接口等。 TypeScript 类定义方式如下: class class_name { // 类作用域 }定义类的关键字为 class&am…

专业照片编辑软件ON1 Photo RAW 2024 mac/win

ON1 Photo RAW 2024 for Mac是一款集专业性与易用性于一体的照片编辑软件。它拥有简洁直观的用户界面,即便对于摄影新手,也能快速上手。软件支持RAW格式照片处理,能够完整保留照片原始信息,让后期调整更加灵活。 在功能方面&#…

boost之bimaps

Boost.Bimap 是 Boost 库中的一个容器,它支持双向映射,即允许通过键查找值,也允许通过值查找键。 Boost.Bimap 的主要功能介绍如下: 双向查找:与 STL 中的 map 和 multimap 不同,这两者只能进行单向映射&a…

基于LabVIEW的CAN通信系统开发案例

基于LabVIEW的CAN通信系统开发案例 介绍了基于LabVIEW开发的CAN通信系统,该系统主要用于汽车行业的数据监控与分析。通过对CAN通信协议的有效应用,实现了车辆控制系统的高效信息交换与实时数据处理,从而提升了车辆性能的检测与优化能力。 项…

点击按钮(文字)调起elementUI大图预览

时隔一年,我又回来了 ~ 最近在做后台,遇到一个需求,就是点击“查看详情”按钮,调起elementUI的大图预览功能,预览多张图片,如下图: 首先想到的是使用element-ui的el-image组件,但它是…

Elasticsearch中父子文档的关联:利用Join类型赋予文档的层级关系

码到三十五 : 个人主页 心中有诗画,指尖舞代码,目光览世界,步履越千山,人间尽值得 ! Elasticsearch是一个强大的搜索引擎,它提供了丰富的功能来满足复杂的搜索需求。其中,父子索引类型的join功…

蓝桥杯之注意事项

1.特殊求解的地方 2.一些数学公式 比如二叉树求全深度数值那道题 3.掌握有关库函数 #include<algorithm> 包含sort&#xff08;&#xff09;函数【排列函数】C sort()排序详解-CSDN博客&#xff0c;next_permutation()函数【求解全排列问题】求解数组大小sizeof(arr…

商业银行风险管理

商业银行风险管理 银行业风险类型概述管理信用风险管理利率风险缺口分析 持续期分析利率互换消除利率风险表外业务的风险管理 银行业风险类型概述 信用风险市场风险&#xff08;利率风险、汇率风险等市场价 格风险&#xff09;财务风险&#xff08;流动性风险&#xff09;操作…

【Java EE】 IoC详解(Bean的存储)

文章目录 &#x1f38d;Controller&#xff08;控制器存储&#xff09;&#x1f338;如何从Spring容器中获取对象&#xff08;ApplicationContext&#xff09;&#x1f338;获取bean对象的其他方式&#xff08;BeanFactory&#xff09;&#x1f338;Bean 命名约定&#x1f338;…

支持向量机模型

通过5个条件判定一件事情是否会发生&#xff0c;5个条件对这件事情是否发生的影响力不同&#xff0c;计算每个条件对这件事情发生的影响力多大&#xff0c;写一个支持向量机模型程序,最后打印5个条件分别的影响力。 示例一 为了计算每个条件对一件事情发生的影响力&#xff0c…

【Spring进阶系列丨第九篇】基于XML的面向切面编程(AOP)详解

文章目录 一、基于XML的AOP1.1、打印日志案例1.1.1、beans.xml中添加aop的约束1.1.2、定义Bean 1.2、定义记录日志的类【切面】1.3、导入AOP的依赖1.4、主配置文件中配置AOP1.5、测试1.6、切入点表达式1.6.1、访问修饰符可以省略1.6.2、返回值可以使用通配符&#xff0c;表示任…

静电场中的导体与介质

静电场可能分布于填充了各种媒质的区域。虽然媒质宏观上保持电中性&#xff0c;但其内部的各种微观带电系统不可避免地会与静电场相互作用。 一般而言&#xff0c;媒质可分为三类&#xff1a;导体、介质(绝缘体)和半导体。在静电场中半导体特性与导体类似&#xff0c;因此仅就…