分类预测 | Matlab实现PSO-LSSVM粒子群算法优化最小二乘支持向量机数据分类预测

分类预测 | Matlab实现PSO-LSSVM粒子群算法优化最小二乘支持向量机数据分类预测

目录

    • 分类预测 | Matlab实现PSO-LSSVM粒子群算法优化最小二乘支持向量机数据分类预测
      • 分类效果
      • 基本介绍
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现PSO-LSSVM粒子群算法优化最小二乘支持向量机数据分类预测(完整源码和数据),优化参数为,优化RBF核函数gam和sig,运行环境为Matlab2018及以上。
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换excel数据就可以用;
3.程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据获取方式资源处直接下载Matlab实现PSO-LSSVM粒子群算法优化最小二乘支持向量机数据分类预测(完整源码和数据)。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集%
P_train = res(1: 250, 1: 12)';
T_train = res(1: 250, 13)';
M = size(P_train, 2);P_test = res(251: end, 1: 12)';
T_test = res(251: end, 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);
t_train = T_train;
t_test  = T_test;%% LS参数设置
type        = 'c';             % 模型类型 分类
kernel_type = 'RBF_kernel';    % 线性核函数
codefct     = 'code_OneVsOne'; % 一对一编码分类
fun = @getObjValue;  % 目标函数
dim = 2;             % 优化参数个数
ub  = [300, 300];  % 优化参数目标上限
lb  = [1, 1];   % 优化参数目标下限pop = 8;             % 数量
Max_iteration = 20; % 最大迭代次数   c = Best_pos(1);  
g = Best_pos(2);%% 编码
[t_train,codebook,old_codebook] = code(t_train,codefct);%% 建立模型
model = initlssvm(p_train,t_train,type,c,g,kernel_type,codefct); %SSA%% 训练模型
model = trainlssvm(model);%% 测试模型
t_sim1 = simlssvm(model,p_train);
t_sim2 = simlssvm(model,p_test); T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%% 性能评价
error1 = sum((T_sim1' == T_train))/M * 100 ;
error2 = sum((T_sim2' == T_test))/N * 100 ;%% 优化曲线
figure
plot(curve, 'linewidth',1.5);
title('-LSSVM')
xlabel('The number of iterations')
ylabel('Fitness')
grid on;
%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/815061.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ 红黑树模拟实现

💓博主CSDN主页:麻辣韭菜💓   ⏩专栏分类:C知识分享⏪   🚚代码仓库:C高阶🚚   🌹关注我🫵带你学习更多C知识   🔝🔝 前言 前面我们实现了AVL树,发明AVL树…

AI大模型探索之路-实战篇:基于CVP架构-企业级知识库实战落地

目录 前言 一、概述 二、本地知识库需求分析 1. 知识库场景分析 2. 知识库应用特点 3. 知识库核心功能 三、本地知识库架构设计 1. RAG架构分析 2. 大模型方案选型 3. 应用技术架构选型 4. 向量数据库选型 5. 模型选型 三、本地知识库RAG评估 四、本地知识库代码落地 1. 文件…

一文了解LangChain的记忆模块(理论实战+细节)

大多数LLM应用程序都有一个会话接口。会话的一个重要组成部分是能够参考会话早期的信息(上文信息)。这种存储过去互动信息的能力就称为“记忆(Memory)”。LangChain提供了许多用于向系统添加Memory的封装。 目前 LangChain 中大多…

OJ 连续数的和 球弹跳高度的计算【C判断是否为完全平方数】【格式输出%g输出全部小数部分】

连续数的和 判断是否为完全平方数有两种方法 1.遍历所有小于该数的整数,有一个满足平方与该数相等,则是完全平方数 2.用sqrt()或pow()函数对该数开方,取整(舍去小数部分),再平方,与该数相等则…

nodejs解析url参数

需要引入 url 模块; var http require(http); var url require(url);http.createServer(function (req, res) {res.writeHead(200, {Content-Type: text/plain});// 解析 url 参数var params url.parse(req.url, true).query;res.write("name: " par…

初学python记录:力扣705. 设计哈希集合

题目: 不使用任何内建的哈希表库设计一个哈希集合(HashSet)。 实现 MyHashSet 类: void add(key) 向哈希集合中插入值 key 。bool contains(key) 返回哈希集合中是否存在这个值 key 。void remove(key) 将给定值 key 从哈希集合…

Linux部署自动化运维平台Spug

文章目录 前言1. Docker安装Spug2 . 本地访问测试3. Linux 安装cpolar4. 配置Spug公网访问地址5. 公网远程访问Spug管理界面6. 固定Spug公网地址 前言 Spug 面向中小型企业设计的轻量级无 Agent 的自动化运维平台,整合了主机管理、主机批量执行、主机在线终端、文件…

halcon-轴断面检测定位

前言 通常情况下轴检测时,通常会检测轴的各个阶段的长度。但是由于各种原因,在轴断面的区域现实不明显,无法正确提取,这时候需要根据轴断面的突出部分进行检测,但是由于部分轴的粗轴和细轴区域的宽度差距相当接近&…

windows SDK编程 --- 第一个程序

一、基础知识 1.Unicode 和 ANSI 在 Windows 编程中,Unicode 和 ANSI 是两种不同的字符编码方法,它们用于定义如何在计算机中表示和存储字符数据。 ANSI ANSI(American National Standards Institute)编码是一种基于单字节的字符…

使用阿里云试用Elasticsearch学习:4. 聚合——2

近似聚合 如果所有的数据都在一台机器上,那么生活会容易许多。 CS201 课上教的经典算法就足够应付这些问题。如果所有的数据都在一台机器上,那么也就不需要像 Elasticsearch 这样的分布式软件了。不过一旦我们开始分布式存储数据,就需要小心…

Vue的学习之旅-part6-循环的集中写法与ES6增强语法

Vue的学习之旅-循环的集中写法与ES6增强语法 vue中的几种循环写法for循环for in 循环 for(let i in data){}for of 循环 for(let item of data){}reduce() 遍历 reduce( function( preValue, item){} , 0 ) ES6增强写法 类似语法糖简写对象简写函数简写 动态组件中使用 <kee…

AI应用实战2:使用scikit-learn进行回归任务实战

代码仓库在gitlab&#xff0c;本博客对应于02文件夹。 1.问题分析 在此篇博客中我们来对回归任务进行实战演练&#xff0c;背景是直播带货平台的业绩预测。第一步&#xff0c;就是分析问题。 问题痛点&#xff1a; 在直播带货平台上&#xff0c;由于市场环境多变、用户行为复…

5 个让日常编码更简单的 Python 库

今天我们一起来研究一些非常有用的第三方模块&#xff0c;可以使得我们的日常编码变得更加简单方便 sh https://github.com/amoffat/sh 如果曾经在 Python 中使用过 subprocess 库&#xff0c;那么我们很有可能对它感到失望&#xff0c;它不是最直观的库&#xff0c;可能还有些…

ubuntu 更改 ssh 默认端口 22 以加固安全

出于加固安全考虑&#xff0c;一般公司会禁用 ssh 的 22 端口号&#xff0c;因此我们需要改为其他端口。 1、ssh 命令行登录 进入台式机&#xff0c;修改 /etc/ssh/sshd_config 文件中的 Port 配置行&#xff0c;将 22 改为 8022&#xff0c;保存修改后&#xff0c;重启 ssh 服…

【汇编】存储器

存储器 计算机存储器可分为内部存储器&#xff08;又称内存或主存&#xff09;和外部存储器&#xff0c;其中内存是CPU能直接寻址的储存空间&#xff0c;由半导体器件制成 存储单元的地址和内容 计算机存储信息的基本单位是一个二进制位&#xff0c;一位可存储一个二进制数&…

企业利器大曝光:CRM系统功能剖析

企业存在的根本目标是吸引并留住顾客。为了能够追踪顾客的信息以及与他们保持联系&#xff0c;不论企业规模大小&#xff0c;都长期使用了多种传统的手工方式。——彼得德鲁克 CRM系统的功能有哪些&#xff1f;如何做客户管理一直是企业管理中的热门话题&#xff0c;CRM&#…

[大模型]Qwen1.5-7B-Chat-GPTQ-Int4 部署环境

Qwen1.5-7B-Chat-GPTQ-Int4 部署环境 说明 Qwen1.5-72b 版本有BF16、INT8、INT4三个版本&#xff0c;三个版本性能接近。由于BF16版本需要144GB的显存&#xff0c;让普通用户忘却止步&#xff0c;而INT4版本只需要48GB即可推理&#xff0c;给普通用户本地化部署创造了机会。&…

C语言——数据在内存中的存储

引言 数据是程序运行的核心。当我们用C语言编写程序时&#xff0c;我们实际上是在操纵内存中的数据。这些数据在内存中是如何储存的&#xff0c;今天我们就来学习这些内容。 基本数据类型 1.整型 int: 基本整型&#xff0c;通常占用4个字节 short: 短整型&#xff0c;通常占用…

Gradle 在 Spring 中的使用-ApiHug准备-工具篇-006

&#x1f917; ApiHug {Postman|Swagger|Api...} 快↑ 准√ 省↓ GitHub - apihug/apihug.com: All abou the Apihug apihug.com: 有爱&#xff0c;有温度&#xff0c;有质量&#xff0c;有信任ApiHug - API design Copilot - IntelliJ IDEs Plugin | Marketplace ApiHug …

【arduino】控制N位数码管

以下以四位共阳极数码管为例&#xff1b; 本文所有说明均以注释的方式进行。 使用方法&#xff1a; #include "DigitalTube.h" //每位共阳极对应的引脚int digital[4] {8, 11, 12, 7};//参数分别为a f b g e c d dp digital(共阳极引脚数组) length(digital长度)D…