文章目录
- 前言
- 入门
- 前提条件
- Benchmark结构
- 运行benchmark
- 如何(重新)生成一条激励轨迹
- 如何(重新)生成实验数据
- 如何(重新)生成机器人的辨识模型
- 如何重新编译基准程序的.MEX文件
- 用户自定义
- 在基准中添加新的机器人
- 在基准中加入新的辨识算法
- 源码
前言
如果没有一个合适的框架,学生、工程师或研究人员很难评估参数识别方法对于给定场景的相关性。
在这里,我们提出了一个专用于机器人识别的统一基准。到目前为止实现了以下算法:
- Inverse Dynamic Identification Model with Ordinary Least Square (IDIM-OLS)
- Inverse Dynamic Identification Model with Weighted Least Square (IDIM-WLS)
- Inverse Dynamic Identification Model with Iteratively Reweighted Least Square (IDIM-IRLS)
- Inverse Dynamic Identification Model with Total Least Square (IDIM-TLS)
- Inverse Dynamic Identification Model with Maximum Likelihood (IDIM-ML)
- Inverse Dynamic Identification Model with Instrumental Variables (IDIM-IV)
- Direct and Inverse Dynamic Identification Model (DIDIM)
- Closed-Loop Output-Error (CLOE)
- Closed-Loop Input-Error (CLIE)
- Direct Dynamic Identification Model with Extended Kalman Filter (DDIM-EKF)
- Direct Dynamic Identification Model with Square-Root Extended Kalman Filter (DDIM-SREKF)
- Direct Dynamic Identification Model with Unscented Kalman Filter (DDIM-UKF)
- Direct Dynamic Identification Model with Square-Root Unscented Kalman Filter (DDIM-SRUKF)
- Direct Dynamic Identification Model with Central Difference Kalman Filter (DDIM-CDKF)
- Direct Dynamic Identification Model with Square-Root Central Difference Kalman Filter (DDIM-SRCDKF)
- Adaline Neural Network (AdaNN)
- Hopfie