如何将Paddle(Lite)模型转换为TensorFlow(Lite)模型

模型间的相互转换在深度学习应用中很常见,paddlelite和TensorFlowLite是移动端常用的推理框架,有时候需要将模型在两者之间做转换,本文将对转换方法做说明。

环境准备

建议使用TensorFlow2.14,PaddlePaddle 2.6

docker pull tensorflow/tensorflow:2.14.0

Step1:From Paddle to ONNX

直接参考https://github.com/PaddlePaddle/Paddle2ONNX/blob/develop/docs/zh/compile.md 源码编译Paddle2ONNX
然后执行

paddle2onnx --model_dir . --model_filename your.pdmodel --params_filename your.pdiparams --save_file model.onnx   
会看到输出                           
[Paddle2ONNX] Start to parse PaddlePaddle model...
[Paddle2ONNX] Model file path: ./pdmodel.pdmodel
[Paddle2ONNX] Parameters file path: ./pdmodel.pdiparams
[Paddle2ONNX] Start to parsing Paddle model...
[Paddle2ONNX] [bilinear_interp_v2: bilinear_interp_v2_1.tmp_0] Requires the minimal opset version of 11.
[Paddle2ONNX] [pixel_shuffle: pixel_shuffle_1.tmp_0] Requires the minimal opset version of 11.
[Paddle2ONNX] [pixel_shuffle: pixel_shuffle_2.tmp_0] Requires the minimal opset version of 11.
[Paddle2ONNX] Due to the operator: bilinear_interp_v2, requires opset_version >= 11.
[Paddle2ONNX] Opset version will change to 11 from 9
[Paddle2ONNX] Use opset_version = 11 for ONNX export.
[Paddle2ONNX] PaddlePaddle model is exported as ONNX format now.
2024-04-09 11:55:50 [INFO]	===============Make PaddlePaddle Better!================
2024-04-09 11:55:50 [INFO]	A little survey: https://iwenjuan.baidu.com/?code=r8hu2s

关于pdparams和pdiparams两种参数文件的区别,参考https://www.paddlepaddle.org.cn/documentation/docs/zh/faq/save_cn.html中的描述

Step2:From ONNX to TensorFlow

使用https://github.com/onnx/onnx-tensorflow

pip install tensorflow-addons
pip install tensorflow-probability==0.22.1 
pip install onnx-tf

接下来

onnx-tf convert -i model.onnx -o model.pb

会看到输出

2024-04-09 07:03:32,346 - onnx-tf - INFO - Start converting onnx pb to tf saved model
2024-04-09 07:03:41,015 - onnx-tf - INFO - Converting completes successfully.
INFO:onnx-tf:Converting completes successfully.

在model.pb目录下可以看到saved_model.pb

Step3:From TensorFlow to tflite

参考https://www.tensorflow.org/lite/convert?hl=zh-cn 编写python脚本

import tensorflow as tf
# Convert the model
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) # path to the SavedModel directory
tflite_model = converter.convert()# Save the model.
with open('model.tflite', 'wb') as f:f.write(tflite_model)

运行python脚本,会看到输出

2024-04-09 07:16:45.514656: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:378] Ignored output_format.
2024-04-09 07:16:45.514767: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:381] Ignored drop_control_dependency.
2024-04-09 07:16:45.515630: I tensorflow/cc/saved_model/reader.cc:83] Reading SavedModel from: .
2024-04-09 07:16:45.517291: I tensorflow/cc/saved_model/reader.cc:51] Reading meta graph with tags { serve }
2024-04-09 07:16:45.517352: I tensorflow/cc/saved_model/reader.cc:146] Reading SavedModel debug info (if present) from: .
2024-04-09 07:16:45.523781: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:382] MLIR V1 optimization pass is not enabled
2024-04-09 07:16:45.524480: I tensorflow/cc/saved_model/loader.cc:233] Restoring SavedModel bundle.
2024-04-09 07:16:45.543346: I tensorflow/cc/saved_model/loader.cc:217] Running initialization op on SavedModel bundle at path: .
2024-04-09 07:16:45.559402: I tensorflow/cc/saved_model/loader.cc:316] SavedModel load for tags { serve }; Status: success: OK. Took 43775 microseconds.
2024-04-09 07:16:45.584171: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:269] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.
2024-04-09 07:16:45.635201: I tensorflow/compiler/mlir/lite/flatbuffer_export.cc:2245] Estimated count of arithmetic op

到此大功告成!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/813691.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【windows 】taskkill命令

在Windows操作系统中,并没有直接称为“kill”的命令来终止进程,但是你可以使用“taskkill”命令或者通过任务管理器来实现类似的功能。 “taskkill”是一个强大的命令行工具,可以用来终止一个或多个任务或进程。以下是一些常用的“taskkill”…

智能电网将科技拓展至工厂之外的领域

【摘要/前言】 物联网已然颠覆我们日常生活的许多层面。在家居方面,家电变成连网设备,不仅让我们能控制灯光与上网购物,甚至在出门时提供安全功能。在工业领域,智能工厂改变产品制造的方式。工业物联网(IIoT)不仅让制造商更加敏捷…

python常用知识总结

文章目录 1. 常用内置函数1. ASCII码与字符相互转换 1. 常用内置函数 1. ASCII码与字符相互转换 # 用户输入字符 c input("请输入一个字符: ")# 用户输入ASCII码,并将输入的数字转为整型 a int(input("请输入一个ASCII码: "))print( c &qu…

Spring Boot 学习(5)——开发流程:快速入门

花了几天的时间,整出个 “hello spring boot”,并且把它从 2 搞到了 3。 纸上得来终觉浅!自己实践出真知!现在再回头来囫囵一遍,加深下印象。回想下从前自觉某一编程语言大都如此,先找到简单示例照着画一遍…

stacking学习

KFlod 适用于用户回归类型数据划分 stratifiedKFlod 适用于分类数据划分 并且在实验中也发现,stratifiedKFlod.split(X_train,y_train)的y_train不可为连续数据,因此无法使用,只能用KFold models [GBDT(n_estimators100), RF(n_estimators1…

【vue3-pbstar-books】大学生前端期末作业(vue3、element-plus、ts、pinia、vite、json-server)

一、项目要求 二、项目介绍 vue3-pbstar-books是一个图书主题的pc端网站,该项目有首页、全部书籍页、书籍分类页、书籍详情页和关于页五个页面。该方案结合了 Vue3、Element-Plus、TypeScript、Pinia 和 Vite 等先进技术,实现高效的页面布局、状态管理和…

Spring之AOP的详细讲解

目录 一.SpringAOP是什么? 1.1理论知识点 1.2简单的AOP例子 二.SpringAOP的核心概念 2.1切点(Pointcut) 2.2通知(Advice) 2.3切⾯(Aspect) 2.4通知类型 2.5切⾯优先级 Order 2.6切点表达式 2.6.1 execution表达式 2.6.2annotati…

dfs回溯 -- Leetcode46. 全排列

题目链接:46. 全排列 题目描述 给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例 1: 输入:nums [1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]示…

天地人和•大道不孤——卢禹舜中国画作品展在重庆美术馆隆重开幕

2024年4月12日,由中国国家画院、重庆市文化和旅游发展委员会主办,重庆美术馆(重庆画院、重庆国画院)、北京八荒锦绣美术馆、中国国际文化交流基金会卢禹舜艺术基金承办的“天地人和•大道不孤——卢禹舜中国画作品展”开幕式在重庆…

jmeter实验 模拟:从CSV数据到加密请求到解密返回数据再到跨越线程组访问解密后的数据

注意,本实验所说的加密只是模拟加密解密,您需要届时写自己的加解密算法或者引用含有加密算法的相关jar包才行. 思路: 线程组1: 1.从CSV文件读取原始数据 2.将读取到的数据用BeanShell预习处理器进行加密 3.HTTP提取器使用加密后的数据发起请求 4.使用BeanShell后置处理器…

OceanBase—操作实践

文档结构 1、概念简介2、核心设计3、操作实践3.3、数据同步 官方文档:https://www.oceanbase.com/docs/oceanbase-database-cn 1、概念简介 版本分为社区版和企业版,其中企业版兼容MySQL 和Oracle数据库语法; 2、核心设计 存储层 复制层 …

底层文件操作的各种函数(二)------printf,fprintf,sprintf,scanf,fscanf,sscanf的对比以及文件缓冲区

偷得几日清闲,又因一瞬之间对蹉跎时间的愧疚,由此而来到CSDN这个高手云集和新手求学的平台来也写上那么一篇博客。虽然自己的博客那么久不温不热,但坚持写作,巩固自己就好。今天要讲的是续接上一篇文章的补充与继续吧。上期文章&a…

MQ:延迟队列

6.1场景: 1.定时发布文章 2.秒杀之后,给30分钟时间进行支付,如果30分钟后,没有支付,订单取消。 3.预约餐厅,提前半个小时发短信通知用户。 A -> 13:00 17:00 16:30 延迟时间: 7*30 * 60 *…

PG事务、事务隔离级别、并发控制

事物与并发控制 ################################## 事物是关系型数据库中非常重要的概念。 并发通常能带来更大的吞吐量、资源利用率和更好的性能。 当多个事物并发执行时,即使每个单独的事物都正确的执行,数据库的一致性可能被破坏。为了控制并发事物之间的相互影响,解…

专栏开篇 | 虚拟直播软件的技术架构与应用场景分析

系列文章 技术探索 特征点检测 如何在前端项目中使用opencv.js | opencv.js入门如何使用tensorflow.js实现面部特征点检测tensorflow.js 如何从 public 路径加载人脸特征点检测模型tensorflow.js 如何使用opencv.js通过面部特征点估算脸部姿态并绘制示意图tensorflow.js 使用…

GB/T 28181标准中的错误码,国标28181中可能出现的SIP协议相关的错误码及其含义

目录 一、GB/T 28181标准介绍 (一)概述 (二)关键内容和特点 1. 系统架构: 2. 设备接入: 3. 网络通信: 4. 业务功能: 5. 安全保护: 6. 平台管理: &a…

【C语言】字符串函数和内存函数及其模拟实现

文章目录 前言 一、常见字符串库函数1.strlen函数2.长度不受限制的字符串函数2.1 strcpy2.2 strcat2.3 strcmp 3.长度受限制的字符串函数3.1 strncpy3.2 strncat3.3 strncmp 二、字符串查找函数strstrstrtok 三、strerror函数四、内存操作函数1.memcpy2.memmove3.memcmp 五、字…

力扣刷题 二叉树层序遍历相关题目II

NO.116 填充每个节点的下一个右侧节点指针 给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下: struct Node {int val;Node *left;Node *right;Node *next; } 填充它的每个 next 指针,…

jieba分词的应用

使用jieba分词的目的主要是将连续的中文文本切分成独立的词汇单元,以便进行后续的文本分析和处理。jieba分词是中文文本处理中的一个重要步骤,特别适用于中文等没有明显词汇边界的语言。 jieba分词的应用场景非常广泛,包括但不限于以下几个方…

iOS开发如何更改xcode中的Apple ID

在Xcode中更改Apple ID是一项常见的任务,尤其是当你需要切换到另一个开发者账号或者团队时。下面是一个简单的步骤指南,帮助你更改Xcode中的Apple ID: 步骤一:退出当前的Apple ID 1.打开Xcode应用程序。 2.在菜单栏中,…