大模型从入门到应用——LangChain:代理(Agents)-[代理执行器(Agent Executor):结合使用Agent和VectorStore]

分类目录:《大模型从入门到应用》总目录


代理执行器接受一个代理和工具,并使用代理来决定调用哪些工具以及以何种顺序调用。本文将参数如何结合使用Agent和VectorStore。这种用法是将数据加载到VectorStore中,并希望以Agent的方式与之进行交互。

推荐的方法是创建一个RetrievalQA,然后将其作为整体Agent中的工具来使用。让我们在下面看一下如何实现,我们可以使用多个不同的vectordbs,将Agent作为它们之间的路由器。有两种不同的方法可以实现这一点:

  • 让Agent像正常工具一样使用vectorstores
  • 设置return_direct=True来将Agent真正用作路由

创建VectorStore

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
llm = OpenAI(temperature=0)
from pathlib import Path
relevant_parts = []
for p in Path(".").absolute().parts:relevant_parts.append(p)if relevant_parts[-3:] == ["langchain", "docs", "modules"]:break
doc_path = str(Path(*relevant_parts) / "state_of_the_union.txt")
from langchain.document_loaders import TextLoader
loader = TextLoader(doc_path)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)embeddings = OpenAIEmbeddings()
docsearch = Chroma.from_documents(texts, embeddings, collection_name="state-of-union")

日志输出:

Running Chroma using direct local API.
Using DuckDB in-memory for database. Data will be transient.
state_of_union = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=docsearch.as_retriever())

输入:

from langchain.document_loaders import WebBaseLoader
loader = WebBaseLoader("https://beta.ruff.rs/docs/faq/")
docs = loader.load()
ruff_texts = text_splitter.split_documents(docs)
ruff_db = Chroma.from_documents(ruff_texts, embeddings, collection_name="ruff")
ruff = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=ruff_db.as_retriever())

日志输出:

Running Chroma using direct local API.
Using DuckDB in-memory for database. Data will be transient.

创建代理

# Import things that are needed generically
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain.tools import BaseTool
from langchain.llms import OpenAI
from langchain import LLMMathChain, SerpAPIWrapper
tools = [Tool(name = "State of Union QA System",func=state_of_union.run,description="useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question."),Tool(name = "Ruff QA System",func=ruff.run,description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question."),
]
# Construct the agent. We will use the default agent type here.
# See documentation for a full list of options.
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("What did biden say about ketanji brown jackson in the state of the union address?")

日志输出:

Entering new AgentExecutor chain...
I need to find out what Biden said about Ketanji Brown Jackson in the State of the Union address.
Action: State of Union QA System
Action Input: What did Biden say about Ketanji Brown Jackson in the State of the Union address?
Observation:  Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.
Thought:I now know the final answer
Final Answer: Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.Finished chain.

输出:

"Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence."

输入:

agent.run("Why use ruff over flake8?")

输出:

Entering new AgentExecutor chain...
I need to find out the advantages of using ruff over flake8
Action: Ruff QA System
Action Input: What are the advantages of using ruff over flake8?
Observation:  Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.
Thought:I now know the final answer
Final Answer: Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.Finished chain.

输出:

'Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.'

仅将Agent用作路由器

如果我们打算将Agent用作路由,并且只想直接返回RetrievalQAChain的结果,我们还可以设置return_direct=True

需要注意的是,在上面的示例中,Agent在查询RetrievalQAChain之后还做了一些额外的工作,我们可以避免这样做,直接返回结果。

tools = [Tool(name = "State of Union QA System",func=state_of_union.run,description="useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question.",return_direct=True),Tool(name = "Ruff QA System",func=ruff.run,description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question.",return_direct=True),
]
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("What did biden say about ketanji brown jackson in the state of the union address?")

日志输出:

Entering new AgentExecutor chain...
I need to find out what Biden said about Ketanji Brown Jackson in the State of the Union address.
Action: State of Union QA System
Action Input: What did Biden say about Ketanji Brown Jackson in the State of the Union address?
Observation:  Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.Finished chain.

输出:

" Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence."

输入:

agent.run("Why use ruff over flake8?")

日志输出:

Entering new AgentExecutor chain...
I need to find out the advantages of using ruff over flake8
Action: Ruff QA System
Action Input: What are the advantages of using ruff over flake8?
Observation:  Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.Finished chain.

输出:

' Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.'

多跳向量存储推理

由于vectorstores可以很容易地作为Agent中的工具使用,因此可以轻松使用现有的Agent框架回答依赖于vectorstores的多跳问题。

tools = [Tool(name = "State of Union QA System",func=state_of_union.run,description="useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question, not referencing any obscure pronouns from the conversation before."),Tool(name = "Ruff QA System",func=ruff.run,description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question, not referencing any obscure pronouns from the conversation before."),
]
# Construct the agent. We will use the default agent type here.
# See documentation for a full list of options.
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("What tool does ruff use to run over Jupyter Notebooks? Did the president mention that tool in the state of the union?")

日志输出:

Entering new AgentExecutor chain...
I need to find out what tool ruff uses to run over Jupyter Notebooks, and if the president mentioned it in the state of the union.
Action: Ruff QA System
Action Input: What tool does ruff use to run over Jupyter Notebooks?
Observation:  Ruff is integrated into nbQA, a tool for running linters and code formatters over Jupyter Notebooks. After installing ruff and nbqa, you can run Ruff over a notebook like so: > nbqa ruff Untitled.ipynb
Thought:I now need to find out if the president mentioned this tool in the state of the union.
Action: State of Union QA System
Action Input: Did the president mention nbQA in the state of the union?
Observation:  No, the president did not mention nbQA in the state of the union.
Thought:I now know the final answer.
Final Answer: No, the president did not mention nbQA in the state of the union.Finished chain.

输出:

'No, the president did not mention nbQA in the state of the union.'

参考文献:
[1] LangChain官方网站:https://www.langchain.com/
[2] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[3] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/81365.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【深度学习】 Python 和 NumPy 系列教程(十九):Matplotlib详解:2、3d绘图类型(5)3D等高线图(3D Contour Plot)

目录 一、前言 二、实验环境 三、Matplotlib详解 1、2d绘图类型 2、3d绘图类型 0. 设置中文字体 1. 3D线框图(3D Line Plot) 2. 3D散点图(3D Scatter Plot) 3. 3D条形图(3D Bar Plot) 4. 3D曲面图…

MySQL数据库详解 三:索引、事务和存储引擎

文章目录 1. 索引1.1 索引的概念1.2 索引的作用1.3 如何实现索引1.4 索引的缺点1.5 建立索引的原则依据1.6 索引的分类和创建1.6.1 普通索引1.6.2 唯一索引1.6.3 主键索引1.6.4 组合索引1.6.5 全文索引 1.7 查看索引1.8 删除索引 2. 事务2.1 事务的概念2.2 事务的ACID特性2.2.1…

人机中的事实与价值时空、排序

人机结合智能与事实价值融合分析确实是未来解决复杂疑难问题的基本策略之一。该策略利用人类智慧和机器智能相结合,结合有效的事实和价值分析方法,以更全面、准确、高效地解决问题。 通过人机结合,可以充分发挥人类的主观能动性、判断力和创造…

2023年 python结合excel实现快速画图(零基础快速入门)

目录 1.适用人群 2.环境配置 3.基本用法 3.1 数据读取 3.2 数据分析 3.3 数据组装 3.4 制表: 4.快速提升 5.效果展示 1.适用人群 电脑有python环境,会python基本使用,需要短时间内完成大量画图任务的数据分析的人群。(有…

逆向-beginners之goto

#include <stdio.h> int main() { printf("begin.\n"); goto exit; printf("skip me!\n"); exit: printf("end\n"); } #if 0 某些情况下还必须使用这种语句 goto直接编译成了JMP。这两个指令的效果完全相同&#xff…

JDK17特性

文章目录 一、JAVA17概述二、语法层面的变化1.密封类2.switch模式匹配&#xff08;预览&#xff09; 三、API层面变化1.Vector API&#xff08;第二个孵化器&#xff09;2.特定于上下文的反序列化过滤器 四、其他变化1.恢复始终严格的浮点语义2.JEP 增强型伪随机数生成器3.JEP …

Linux命令:free命令

目录 一、简介二、free -h1、free列和available列的区别2、swap空间 三、free -h -s 2 -c 2 一、简介 free 命令可以显示Linux系统中 空闲的、已用的物理内存 及 swap内存,及 被内核使用的buffer。在Linux系统监控的工具中&#xff0c;free命令是最经常使用的命令之一。 free…

C++库函数——map与set

目录 1.关联式容器是什么&#xff1f; 2.键值对 3.set ①set的介绍 ②set的模板参数列表 ③set的构造 ④set的迭代器 ⑤set的容量 ⑥set的修改与操作 ⑦set的使用举例 4.multiset ①multiset的介绍 ②multiset的使用举例 5.map ①map的介绍 ②map的模版参数列表…

HuggingFace Transformer

NLP简介 HuggingFace简介 hugging face在NLP领域最出名&#xff0c;其提供的模型大多都是基于Transformer的。为了易用性&#xff0c;Hugging Face还为用户提供了以下几个项目&#xff1a; Transformers(github, 官方文档): Transformers提供了上千个预训练好的模型可以用于不…

关于不停机发布新版本程序的方式

“不停机发布新版本程序”&#xff0c;暂且这么称呼吧&#xff0c;其实就是所说的滚动发布、灰度发布、金丝雀发布和蓝绿发布。 之所以会总结性地提一下这几个概念&#xff0c;主要是本次出门游历&#xff0c;流浪到了乌兰察布市四王子旗&#xff0c;在这儿遇上了个有趣儿的家伙…

目标检测YOLO实战应用案例100讲-基于单阶段网络的小目标检测

目录 前言 目标检测的研究现状 小目标检测的研究现状

基于讯飞人脸算法(调用API进行人脸比对)

先看结果 必须遥遥领先 所需准备 这里我调用了&#xff1a; 人脸比对 API 文档 | 讯飞开放平台文档中心https://www.xfyun.cn/doc/face/xffaceComparisonRecg/API.html#%E6%8E%A5%E5%8F%A3%E8%AF%B4%E6%98%8E 代码里所涉及的APPID、APISecret、APIKey 皆从讯飞的控制台获取&…

市场,只能被操纵,不能被战胜

所谓市场&#xff0c;不过是千千万参与主体各自独立意志、自主行动所形成的复杂混沌的互动结果。价格&#xff0c;则是这一复杂混沌系统的涌现现象。 无数在市场中追风打浪的人&#xff0c;总是梦想着自己有朝一日能够战胜市场&#xff0c;获得超额回报。于是他们绞尽脑汁&…

Mybatis学习笔记3 在Web中应用Mybatis

Mybatis学习笔记2 增删改查及核心配置文件详解_biubiubiu0706的博客-CSDN博客 技术栈:HTMLServletMybatis 学习目标: 掌握mybatis在web应用中如何使用 Mybatis三大对对象的作用域和生命周期 关于Mybatis中三大对象的作用域和生命周期、 官网说明 ThreadLocal原理及使用 巩…

QT基础教程(QMap和QHash)

文章目录 前言一、QMap二、QHash三、QMap和QHash实际运用 总结 前言 本篇文章将为大家讲解QT中两个非常重要的类&#xff1a;QMap和QHash。 QMap和QHash都是Qt框架中用于存储键值对的数据结构&#xff0c;它们提供了快速的查找、插入和删除操作&#xff0c;但在某些方面有一些…

cherry-pick

要将dev分支的某次提交给master分支&#xff0c;可以使用以下命令&#xff1a; 1. 切换到dev分支&#xff1a;git checkout dev 2. 查看提交历史&#xff0c;找到要提交给master的某次提交的commit hash&#xff08;假设为 <commit_hash>&#xff09; 3. 切换到master…

前端加密和解密

Base64加密&#xff1a; 加密&#xff1a;Base64.encode(); Base64.encode(); 解密&#xff1a;Base64.decode(); Base64.decode(); url携带参数加密&#xff1a; 加密&#xff1a;encodeURLComponent(); encodeURLComponent(); 解密&#xff1a;decodeURLComponent(); …

[软考中级]软件设计师-知识产权

考查 有2-3题&#xff0c;题号可能在10和12 著作权 也称为版权&#xff0c;只作者对其创作的作品享有的人身权和财产权 人身权包括发表权&#xff0c;署名权&#xff0c;修改权和保护作品完整权&#xff0c;其他权利均为财产权 我国发表权保护期为作者终生及其死亡后的50年…

HttpUtils带连接池

准备祖传了&#xff0c;有问题欢迎大家指正。 HttpUtil import com.txlc.cloud.commons.exception.ServiceException; import com.txlc.dwh.common.constants.MyErrorCode; import org.ssssssss.script.annotation.Comment;import java.io.UnsupportedEncodingException; impo…

JAVA入坑之嵌套类

一、嵌套类入门 1.1概述 Java嵌套类是指在一个类中定义另一个类的一种方式&#xff0c;它可以提高代码的可读性、可维护性和封装性。Java嵌套类分为两种类型&#xff1a;静态嵌套类和非静态嵌套类。 静态嵌套类&#xff1a;Static nested classes,即类前面有static修饰符 非静…