【初阶数据结构】树(tree)的基本概念——C语言

目录

一、树(tree)

1.1树的概念及结构

1.2树的相关概念

1.3树的表示

1.4树在实际中的运用(表示文件系统的目录树结构)

二、二叉树的概念及结构

2.1二叉树的概念

2.2现实中真正的二叉树

2.3特殊的二叉树

2.4二叉树的性质

2.5二叉树的存储结构


一、树(tree)

1.1树的概念及结构

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

(1)有一个特殊的结点,称为根结点,根节点没有前驱结点
(2)除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
(3)因此,树是递归定义的。

就像这张图片中的A为根节点。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构。

1.2树的相关概念

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林 

1.3树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个兄弟结点
DataType _data; // 结点中的数据域
};

1.4树在实际中的运用(表示文件系统的目录树结构)

我们的电脑个个盘就可以看成一个树,每个电脑都有C盘,D盘,E盘,F盘甚至还有更多的分盘,每个分盘下面都有很多文件,每个文件里面也会有文件,这就是一个树 。

二、二叉树的概念及结构

2.1二叉树的概念

一棵二叉树是结点的一个有限集合,该集合:

1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

注意:从上图可以看出

1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:

2.2现实中真正的二叉树

 

ps:图片均来自网络

2.3特殊的二叉树

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。

2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树,简单来说一个高度为H的完全二叉树,前H-1层的结点是满的,最后的H层结点个数不确定可能是满的也就是满二叉树,也可能不满。

因此,上面现实的二叉树第一个树是满二叉树,第二个树是完全二叉树。 

2.4二叉树的性质

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点.
2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 2^h-1.
3. 对任何一棵二叉树, 如果度为0其叶结点个数为 N1, 度为2的分支结点个数为N2 ,则有N1=N2+1
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= log(n+1). (ps:log(n+1) 是log以2为底,n+1为对数)
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:
1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子 

2.5二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

1.顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们下一篇文章会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

 2.链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链。

至于二叉树的实现我会在下篇文章中引进堆,并使用堆来实现二叉树,敬请期待!!! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/81307.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

字符集详解

一、为什么乱码&#xff1f; 所有的乱码实质上都是因为字符集选择错误造成的。 流在读取时&#xff0c;编码使用不当也会乱码。 二、什么是字符集&#xff1f; 字符是各种文字和符号的统称&#xff0c;包括各个国家的文字&#xff0c;标点符号&#xff0c;表情等等。字符集…

spring seccurity OAuth 2.0授权服务器工作流程

一、客户端配置&#xff1a;在configure(ClientDetailsServiceConfigurer clients)方法中&#xff0c;配置了一个客户端&#xff0c;包括客户端标识符、客户端秘密、授权类型、授权范围和令牌有效期等信息。这个客户端表示某个应用程序或服务&#xff0c;它将向授权服务器请求访…

MFC主框架和视类PreCreateWindow()函数学习

在VC生成的单文档应用程序中&#xff0c;主框架类和视类均具有PreCreateWindow函数&#xff1b; 从名字可知&#xff0c;可在此函数中添加一些代码&#xff0c;来控制窗口显示后的效果&#xff1b; 并且它有注释说明&#xff0c; Modify the Window class or styles here by…

Bash脚本学习:AWK, SED

1. AWK AWK 是一种编程语言&#xff0c;设计用于处理文件或数据流中基于文本的数据&#xff0c;或者使用 shell 管道。 可以将 awk 与 shell 脚本结合使用或直接在 shell 提示符下使用。 以上展示使用AWK分别打印第一个位置变量和第二个位置变量。 建立一个文档 csvtest.cs…

设计模式:单例模式

目录 什么是单例模式为什么使用单例模式常见的单例写法1. 懒汉式&#xff08;Lazy Initialization&#xff09;2. 双重检查锁定&#xff08;Double-Checked Locking&#xff09;3. 饿汉式&#xff08;Eager Initialization&#xff09;4. 枚举实现单例 总结 什么是单例模式 单…

AI深度学习-卷积神经网络000

文章目录 前言1.什么是深度学习2.语义分割与实例分割概述3.什么是卷积&#xff1f;4.Unet网络 前言 本栏目&#xff0c;主要为深度学习保姆教程。 主要通过B站视频整理而来&#xff1a; 深度学习保姆级教学 Unet语义分割视觉三维重建算法 1.什么是深度学习 深度学习保姆级教…

Scapy 解析 pcap 文件从HTTP流量中提取图片

Scapy 解析 pcap 文件从HTTP流量中提取图片 前言一、网络环境示例二、嗅探流量示例三、pcap 文件处理最后参考 ​ 作者&#xff1a;高玉涵 ​ 时间&#xff1a;2023.9.17 10:25 ​ 环境&#xff1a;Linux kali 5.15.0-kali3-amd64&#xff0c;Python 3.11.4&#xff0c;scapy…

【OpenSSL】VC编译OpenSSL

VC编译OpenSSL 编译工具准备编译OpenSSL建立Hello World工程创建VS工程 编译工具准备 安装好Visual Studio。安装Perl, 主要是用来生成nmake的。准备好汇编语言编译工具nasm,并添加到path路径。下载好Open SSL源代码。 编译OpenSSL 安装Perl,并加入到path路径&#xff0c;检验…

HTML 学习笔记(基础)

它是超文本标记语言&#xff0c;由一大堆约定俗成的标签组成&#xff0c;而其标签里一般又有一些属性值可以设置。 W3C标准&#xff1a;网页主要三大部分 结构&#xff1a;HTML表现&#xff1a;CSS行为&#xff1a;JavaScript <!DOCTYPE html> <html lang"zh-…

SkyWalking快速上手(二)——架构剖析1

文章目录 介绍架构概述一、Agent组件介绍Agent的配置配置参数详解service_namesample_n_per_3_secsnamespacecollector.backend_service Agent的工作原理 二、Collector组件什么是Collector组件?Collector组件的配置配置Collector组件示例 总结 介绍 SkyWalking是一个开源的分…

使用 Feature Flags 实现数据库灰度迁移的监控与可观测性

作者&#xff1a;观测云与胡博 场景描述 很多企业会遇到数据库升级、或数据库迁移的情况&#xff0c;尤其是在自建数据库服务向云数据库服务、自建机房向云机房、旧数据库向新数据库迁移等场景。 然而&#xff0c;我们需要在整个移植过程中保证其稳定性、避免数据遗失、服务宕…

后端中间件安装与启动(Redis、Nginx、Nacos、Kafka)

后端中间件安装与启动 RedisNginxNacosKafka Redis 1.打开cmd终端&#xff0c;进入redis文件目录 2.输入redis-server.exe redis.windows.conf即可启动&#xff0c;不能关闭cmd窗口 &#xff08;端口配置方式&#xff1a;redis目录下的redis.windows.conf配置文件&#xff0c;…

【第四阶段】kotlin语言的定义类和field关键字学习

1.普通成员变量背后隐士代码 为什么在kotlin中是private 可以直接调用&#xff0c;隐式代码如下 package Kotlin.Stage4class Test54{var name"kotlin"/*背后做的事NotNullprivate String name"kotlin";public void setName(NotNull String name){this.na…

【项目经验】:elementui多选表格默认选中

一.需求 在页面刚打开就默认选中指定项。 二.方法Table Methods toggleRowSelection用于多选表格&#xff0c;切换某一行的选中状态&#xff0c;如果使用了第二个参数&#xff0c;则是设置这一行选中与否&#xff08;selected 为 true 则选中&#xff09;row, selected 详细…

LinkedList 源码分析

LinkedList 是一个基于双向链表实现的集合类。 LinkedList 插入和删除元素的时间复杂度 头部插入/删除&#xff1a;只需要修改头结点的指针即可完成插入/删除操作&#xff0c;因此时间复杂度为 O(1)。尾部插入/删除&#xff1a;只需要修改尾结点的指针即可完成插入/删除操作…

vue2 维护状态key的作⽤和原理

1. key定义 为了给 Vue ⼀个提示&#xff0c;以便它能跟踪每个节点的身份&#xff0c;从⽽重⽤和重新排序现有元素&#xff0c;你需要为每项提供⼀个唯⼀ key 2. 写法 <li v-for"(item,index) in obj" :key"item.id">{{item.name}}</li>3. …

2024字节跳动校招面试真题汇总及其解答(五)

17.TCP的拥塞控制 TCP 的拥塞控制是指在 TCP 连接中,发送端和接收端通过协作来控制网络中数据包的流量,避免网络拥塞。TCP 的拥塞控制是 TCP 协议的重要组成部分,它可以确保 TCP 连接的稳定性和可靠性。 TCP 的拥塞控制主要有以下几个目的: 防止网络拥塞:当网络中的数据…

core文件的生成与使用

目录 core 设置例子 1例子 2core 名称及目录修改参考 在使用嵌入式系统时&#xff0c;出错后&#xff0c;不好使用 gdb 调试&#xff0c;这时&#xff0c;可让系统生成一个 core 文件&#xff0c;用于查看出错原因 core 设置 要生成 core 文件&#xff0c;需要先设置 core 文…

数据分析的概念

一、数据分析的目的&#xff1a;把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来&#xff0c;从而找出研究对象的内在规律。&#xff08;主要在于分析目的及过滤脏数据&#xff09; 1.数据分析是有组织有目的地收集数据、分析数据&#xff0c;使之成为信息的过程。&a…

JDK18特性

文章目录 JAVA18概述1. 默认UTF-8字符编码2. 简单的Web服务器3.JavaDoc的增强4. 反射功能的新特性5.Vector API(三次孵化)6. 互联网地址解析SPI7. 外部函数和内存API(二次孵化)8.switch 表达式 JAVA18概述 Java 18 在 2022 年 3 月 22 日正式发布&#xff0c;Java 18 不是一个…