文献速递:深度学习肝脏肿瘤诊断---基于多相增强 CT 和临床数据的恶性肝肿瘤鉴别诊断深度学习

Title 

题目

Deep learning for diferential diagnosisof malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data

基于多相增强 CT 和临床数据的恶性肝肿瘤鉴别诊断深度学习

Abstract

摘要

Liver cancer remains the leading cause of cancer death globally, and the treatment strategies are dis

tinct for each type of malignant hepatic tumors. However, the diferential diagnosis before surgery is challenging and subjective. This study aims to build an automatic diagnostic model for diferentiating malignant hepatic tumors based on patients’ multimodal medical data including multi-phase contrast-enhanced computed tomography and clinical

features.

肝癌仍然是全球癌症死亡的主要原因,每种恶性肝肿瘤的治疗策略都不同。然而,手术前的鉴别诊断具有挑战性且主观性强。本研究旨在基于患者的多模态医疗数据构建自动诊断模型,以鉴别不同的恶性肝肿瘤,这些医疗数据包括多相增强计算机断层扫描和临床特征。

Conclusions

结论

We incorporated deep CNN and gated RNN in the STIC model design for diferentiating malignant

hepatic tumors based on multi-phase CECT and clinical features. Our model can assist doctors to achieve better diag nostic performance, which is expected to serve as an AI assistance system and promote the precise treatment of liver cancer.

我们在 STIC 模型设计中结合了深度 CNN 和门控 RNN,用于基于多相 CECT 和临床特征区分恶性肝肿瘤。我们的模型可以帮助医生达到更好的诊断性能,预期将作为一个 AI 辅助系统,促进肝癌的精准治疗。

Results

结果

The STIC model achieved an accuracy of 86.2% and AUC of 0.893 for classifying HCC and ICC on the test set. When extended to diferential diagnosis of malignant hepatic tumors, the STIC model achieved an accuracy of 72.6% on the test set, comparable with the diagnostic level of doctors’ consensus (70.8%). With the assistance of the STIC model, doctors achieved better performance than doctors’ consensus diagnosis, with an increase of 8.3% in accuracy and 26.9% in sensitivity for ICC diagnosis on average. On the external test set from center 2, the STIC model achieved an accuracy of 82.9%, which verify the model’s generalization ability.STIC 

模型在测试集上对 HCC 和 ICC 的分类准确率达到了 86.2%,AUC 为 0.893。当扩展到恶性肝肿瘤的鉴别诊断时,STIC 模型在测试集上的准确率达到了 72.6%,与医生共识的诊断水平(70.8%)相当。在 STIC 模型的协助下,医生的表现超过了医生共识诊断,平均准确率提高了 8.3%,对 ICC 诊断的敏感性提高了 26.9%。在来自中心 2 的外部测试集上,STIC 模型的准确率达到了 82.9%,验证了模型的泛化能力。

Method

方法

Our study consisted of 723 patients from two centers, who were pathologically diagnosed with HCC, ICC or metastatic liver cancer. The training set and the test set consisted of 499 and 113 patients from center 1, respec tively. The external test set consisted of 111 patients from center 2. We proposed a deep learning model with the modular design of SpatialExtractor-TemporalEncoder-Integration-Classifer (STIC), which take the advantage of deep CNN and gated RNN to efectively extract and integrate the diagnosis-related radiological and clinical features of patients.model.

我们的研究包括来自两个中心的 723 位经病理诊断为肝细胞癌(HCC)、肝内胆管细胞癌(ICC)或转移性肝癌的患者。训练集和测试集分别由来自中心 1 的 499 位和 113 位患者组成。外部测试集由来自中心 2 的 111 位患者组成。我们提出了一个深度学习模型,该模型的模块设计为空间提取器-时间编码器-集成-分类器(STIC),它利用深度 CNN 和门控 RNN 的优势有效提取和整合患者的诊断相关放射学和临床特征。

Figure

图片

Fig. 1 The fowchart of dataset setup, the architecture of the STIC model and the performance on primary malignant hepatic tumors classifcation. A This study consisted of 612 patients in method development cohort and 111 patients in external validation cohort, who were pathologically diagnosed with HCC, ICC or metastatic liver cancer. B The STIC model contains four diferent modules. SpatialExtractor module is a deep CNN that uses convolutional layers to extract detailed spatial features of CECT images. TemporalEncoder module uses gated RNN to mine the changing pattern among diferent CECT phases. In the Integration module, the TemporalEncoder module is concatenated with the vector of encoded dummy clinical variables. Finally, in the Classifer module, the Integration output is passed through the softmax activation function to implement the classifcation task. C The ROC curves of fve-fold cross-validation of the STIC model for classifying benign and malignant hepatic tumors in the preliminary study, where the mean ROC curve was obtained by interpolation of the ROC curves of each fold, with mean AUC of 0.987. D Comparison of the performance for diferencing HCC and ICC on the test set by ROC curve analysis. The AUC of the STIC model was 0.893 (95% CIs, 0.803–0.982), which was much higher than 0.709 (95% CIs, 0.573–0.845) in the Naive RBG model and 0.766 (95% CIs, 0.644–0.888) in the Naive joint model. E Among three models, the STIC model produced the best performance in distinguishing two primary malignant hepatic tumors, with accuracy of 86.2% (95% CIs, 74.6%-93.9%), sensitivity of 0.892 (95% CIs, 0.746–0.970) and specifcity of 0.810 (95% CIs, 0.581–0.946), where sensitivity and specifcity are defned by viewing HCC as positive and ICC as negative. The error bars represent 95% CIs calculated by Wald Z Method with Continuity Correction for accuracy, sensitivity and specifcity and by DeLong method for AUC. F Using McNemar’s Chi-squared test, the STIC model outperformed the Naive RBG model with an increase of 25.9% (95% CIs 11.0%-40.7%, p value=0.001) in accuracy and 0.270 (95% CIs 0.082–0.459,pvalue=0.009) in sensitivity. It also outperformed the Naive joint model with an increase of 17.2% (95% CIs 3.7%-30.8%, p value=0.016) in accuracy and 0.189 (95% CIs 0.015–0.363, p value=0.046) in sensitivity. G The distribution of the predicted score for HCC and ICC according to three models. For two benchmark models, the score predicted had much wider distribution. Our proposed STIC model had a more concentrated distribution of predicted scores for both HCC and ICC. H Comparison of the performance of the STIC model and two benchmark models using diferent extractor’s backbone for binary classifcation of primary malignant hepatic tumors. Using Cochran’s Q test, there were no signifcant diferences in the diagnostic level among STIC models with diferent extractor’s backbone. For Naïve RGB models with diferent extractor’s backbone, there were signifcant diferences in sensitivity (p value<0.001) and specifcity (p value=0.012). For Naïve joint models with diferent extractor’s backbone,there were also signifcant diferences in sensitivity (p value<0.001) and specifcity (p value<0.001)

图 1 数据集设置的流程图、STIC模型的架构以及在原发性恶性肝肿瘤分类上的性能。 A 本研究包括方法开发队列中的612位患者和外部验证队列中的111位患者,这些患者被病理诊断为HCC、ICC或转移性肝癌。B STIC模型包含四个不同的模块。空间提取器模块是一个深度CNN,使用卷积层提取CECT图像的详细空间特征。时间编码器模块使用门控RNN挖掘不同CECT阶段之间的变化模式。在集成模块中,时间编码器模块与编码的虚拟临床变量向量连接。最后,在分类器模块中,集成输出通过softmax激活函数传递以实现分类任务。C STIC模型在初步研究中对良性和恶性肝肿瘤进行分类的五折交叉验证的ROC曲线,其中平均ROC曲线通过插值每一折的ROC曲线获得,平均AUC为0.987。D 通过ROC曲线分析比较在测试集上区分HCC和ICC的性能。STIC模型的AUC为0.893(95% CI,0.803–0.982),远高于Naive RBG模型的0.709(95% CI,0.573–0.845)和Naive联合模型的0.766(95% CI,0.644–0.888)。E 在三个模型中,STIC模型在区分两种原发性恶性肝肿瘤方面产生了最佳性能,准确率为86.2%(95% CI,74.6%-93.9%),敏感性为0.892(95% CI,0.746–0.970)和特异性为0.810(95% CI,0.581–0.946),其中敏感性和特异性是将HCC视为阳性,ICC视为阴性定义的。误差条代表准确性、敏感性和特异性的95% CI由Wald Z方法加连续性校正计算,AUC由DeLong方法计算。F 使用McNemar的卡方检验,STIC模型的性能超过了Naive RBG模型,在准确性上增加了25.9%(95% CI 11.0%-40.7%,p值=0.001)和在敏感性上增加了0.270(95% CI 0.082–0.459,p值=0.009)。它也超过了Naive联合模型,在准确性上增加了17.2%(95% CI 3.7%-30.8%,p值=0.016)和在敏感性上增加了0.189(95% CI 0.015–0.363,p值=0.046)。G 根据三个模型对HCC和ICC的预测分数分布。对于两个基准模型,预测分数有更广的分布。我们提出的STIC模型对HCC和ICC的预测分数分布更集中。H 使用不同提取器骨架对原发性恶性肝肿瘤进行二元分类的STIC模型和两个基准模型的性能比较。使用Cochran的Q检验,STIC模型与不同提取器骨架之间在诊断水平上没有显著差异。对于具有不同提取器骨架的Naïve RGB模型,敏感性(p值

图片

Fig. 2 Model’s performance on the multinomial classifcation of malignant hepatic tumors A Micro-average and macro-average ROC curves of the STIC model for diferentiating HCC, ICC and metastasis on the test set. B The ROC curves of the STIC model for HCC, ICC, metastasis diagnosis on the test set and corresponding diagnosis points of doctors’ consensus and three STIC-assisted doctors. The orange star represents the diagnostic performance of doctors’ consensus. Three triangles with diferent colors represent the diagnostic performance of three STIC-assisted doctors, respectively, and the red pentagon represents the average diagnostic level of these three doctors. For the ICC diagnosis, the performance of doctors’ consensus diagnosis was below the ROC curve of the STIC model, and the performances of three STIC-assisted doctors were all above the ROC curve. C The total accuracy of the STIC model was 72.6% (95% CIs, 63.4%-80.5%), and the total accuracy of the doctors’ consensus was 70.8% (95% CIs, 61.5%-79.0%). Three STIC-assisted doctors achieved the total accuracy of 77.0% (95% CIs, 68.1%-84.4%), 78.8% (95% CIs, 70.1%-85.9%) and 81.4% (95% CIs, 73.0%-88.1%) on the test set, respectively. Using Cochran’s Q test, there was no signifcant diferences in the diagnostic level among three STIC-assisted doctors. When comparing the diagnostic level between three STIC-assisted doctors and doctors’ consensus diagnosis, there were signifcant diferences in sensitivity for ICC (p value=0.038). D The case study of three test samples pathologically diagnosed with ICC. For case 1, the enhancement pattern of CECT was typical, where ICC tumor showed homogeneously low attenuation on NC phase, faint peripheral enhancement on ART phase and gradual centripetal enhancement on PV phase. The diagnosis of doctors’ consensus was ICC. The output of the STIC model was {HCC: 0.067, ICC: 0.646, metastasis: 0.287}. All three STIC-assisted doctors independently diagnosed it as ICC. For case 2, the enhancement pattern of CECT was similar with the typical pattern of HCC tumor, exhibiting low attenuation on NC phase, the early peak of enhancement on ART phase, and followed by a continuous decrease in PV phase. The doctors’ consensus misdiagnosed it as HCC. The output of the STIC model was {HCC: 0.881, ICC: 0.067, metastasis: 0.052}, which also diagnosed it as HCC incorrectly. All three STIC-assisted doctors

misdiagnosed it as HCC. For case 3, there was peripheral enhancement on ART phase, but it was not obvious to the human eyes. The doctors’consensus misdiagnosed it as metastasis. The output of the STIC model was {HCC: 0.114, ICC: 0.587, metastasis: 0.299}, which diagnosed it as ICC correctly. All three STIC-assisted doctors diagnosed it as ICC correctly. E The case study of three test samples pathologically diagnosed with metastasis. For case 1, the doctors’ consensus misdiagnosed it as ICC. The output of the STIC model was {HCC: 0.031, ICC: 0.343, metastasis: 0.626}.Two STIC-assisted doctors independently diagnosed it as metastasis correctly. One STIC-assisted doctor misdiagnosed it as metastasis. For case 2,the doctors’ consensus misdiagnosed it as ICC. The output of the STIC model was {HCC: 0.306, ICC: 0.240, metastasis: 0.454}. All three STIC-assisted doctors independently diagnosed it as metastasis correctly. For case 3, the doctors’ consensus misdiagnosed it as ICC. The output of the STIC model

was {HCC: 0.173, ICC: 0.176, metastasis: 0.651}. All three STIC-assisted doctors independently diagnosed it as metastasis correctly. F The ROC curve analysis of the STIC model for HCC, ICC, metastasis diagnosis on the external test set for additional verifcation. The AUC for diagnosis of HCC, ICC and metastasis on the external test set was 0.986, 0.881 and 0.920, respectively. G Comparison of the performance of the STIC model on the test set from center 1 and on the external test set from center 2 for diferentiating malignant hepatic tumors. Using McNemar’s Chi-squared test, the STIC model’s performance has no signifcant diference on the center 1 and center 2 for the accuracy, sensitivity and specifcity of each type of malignant tumors. Using DeLong test for two ROC curves’ comparison, the STIC mode achieved signifcant better performance on the external test set from center 2 than on the test set from center 1 for the AUC of HCC diagnosis (p value=0.048) and ICC diagnosis (p value=0.039)

图 2 模型在恶性肝肿瘤多项分类上的性能 A STIC模型在测试集上区分HCC、ICC和转移性肿瘤的微平均和宏平均ROC曲线。B 测试集上STIC模型对HCC、ICC、转移性肿瘤诊断的ROC曲线及医生共识和三位STIC辅助医生的对应诊断点。橙色星星代表医生共识的诊断性能。三个不同颜色的三角形分别代表三位STIC辅助医生的诊断性能,红色五边形代表这三位医生的平均诊断水平。对于ICC诊断,医生共识诊断的性能低于STIC模型的ROC曲线,三位STIC辅助医生的性能都高于ROC曲线。C STIC模型的总准确率为72.6%(95% CI,63.4%-80.5%),医生共识的总准确率为70.8%(95% CI,61.5%-79.0%)。三位STIC辅助医生在测试集上分别达到了77.0%(95% CI,68.1%-84.4%)、78.8%(95% CI,70.1%-85.9%)和81.4%(95% CI,73.0%-88.1%)的总准确率。使用Cochran的Q检验,三位STIC辅助医生之间在诊断水平上没有显著差异。在比较三位STIC辅助医生和医生共识诊断的诊断水平时,对于ICC的敏感性存在显著差异(p值=0.038)。D 三个病理诊断为ICC的测试样本案例研究。对于案例1,CECT的增强模式典型,其中ICC肿瘤在NC阶段显示均匀低衰减,在ART阶段显示微弱的周边增强,在PV阶段显示逐渐向心性增强。医生共识的诊断是ICC。STIC模型的输出是{HCC: 0.067, ICC: 0.646, 转移: 0.287}。所有三位STIC辅助医生独立诊断为ICC。对于案例2,CECT的增强模式与HCC肿瘤的典型模式相似,在NC阶段显示低衰减,在ART阶段显示早期增强峰值,然后在PV阶段持续减少。医生共识误诊为HCC。STIC模型的输出是{HCC: 0.881, ICC: 0.067, 转移: 0.052},也错误地诊断为HCC。所有三位STIC辅助医生误诊为HCC。对于案例3,在ART阶段有周边增强,但对人眼来说不明显。医生共识误诊为转移。STIC模型的输出是{HCC: 0.114, ICC: 0.587, 转移: 0.299},正确地诊断为ICC。所有三位STIC辅助医生正确诊断为ICC。E 三个病理诊断为转移的测试样本案例研究。对于案例1,医生共识误诊为ICC。STIC模型的输出是{HCC: 0.031, ICC: 0.343, 转移: 0.626}。两位STIC辅助医生独

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/812191.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络——TCP和UDP协议

目录 前言 前篇 引言 TCP与UDP之间的区别 TCP 三次握手 为什么要三次握手而不是两次握手&#xff1f; 丢包问题与乱序问题的解决 四次挥手 为什么客户端需要等待超时时间&#xff1f; UDP协议 TCP和UDP的主要区别 前言 本博客是博主用于复习计算机网络的博客&…

软件开发安全备受重视,浙江某运营商引入CWASP认证课程,

​浙江省某大型运营商是一家实力雄厚、服务优质的通信运营商&#xff0c;致力于为全省用户提供优质、高效的通信服务。数字时代&#xff0c;该运营商顺应信息能量融合发展趋势&#xff0c;系统打造以5G、算力网络、能力中台为重点的新型信息基础设施&#xff0c;夯实产业转型升…

Redis入门到通关之五大基本数据类型及其使用场景

文章目录 一 什么是NoSQL&#xff1f;二 Redis是什么&#xff1f;三 Redis五大基本类型1 String&#xff08;字符串&#xff09;应用场景 2 List&#xff08;列表&#xff09;应用场景 3 Set&#xff08;集合&#xff09;4 sorted set&#xff08;有序集合&#xff09;应用场景…

代码随想录阅读笔记-回溯【组合总和II】

题目 给定一个数组 candidates 和一个目标数 target &#xff0c;找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用一次。 说明&#xff1a; 所有数字&#xff08;包括目标数&#xff09;都是正整数。解集不能包含重复的组…

VBA中如何对工作表进行排序

代码 在VBA中对工作表进行排序的最简单方法是直接使用Move方法来移动工作表。 Sub SortSheetsByNameDescending()Dim sheetsDim sheet As WorksheetDim i As Integer, j As IntegerDim sortedSheets() As Array 获取当前工作簿中的所有工作表Set sheets ThisWorkbook.Sheets…

MySQL索引、B+树相关知识汇总

MySQL索引、B树相关知识汇总 一、有一个查询需求&#xff0c;MySQL中有两个表&#xff0c;一个表1000W数据&#xff0c;另一个表只有几千数据&#xff0c;要做一个关联查询&#xff0c;如何优化&#xff1f;1、为关联字段建立索引二、小表驱动大表 二、b树和b树的区别1、更高的…

什么是NLP?

&#x1f916;NLP是什么&#xff1f;&#x1f916; NLP&#xff08;Natural Language Processing&#xff09;&#xff0c;全称自然语言处理&#xff0c;是人工智能不可或缺的一环&#xff0c;它搭建了人与计算机之间沟通的桥梁&#x1f309;。 &#x1f6e0;️NLP强大功能一…

高校实习管理系统的设计与实现(论文+源码)_kaic

摘 要 如今社会上各行各业&#xff0c;都喜欢用自己行业的专属软件工作&#xff0c;互联网发展到这个时候&#xff0c;人们已经发现离不开了互联网。新技术的产生&#xff0c;往往能解决一些老技术的弊端问题。因为传统高校实习管理系统信息管理难度大&#xff0c;容错率低&am…

给Parallels Desktop虚拟机下的Linux磁盘扩容

本文是以Ubuntu为例演示&#xff0c;涉及到的命令在centos里也同样适用 一、扩容前查看磁盘容量 二、开始扩容操作 第一步&#xff1a;打开PD分配更大的磁盘空间&#xff0c;要保证有足够大的扩容空间 我的pd里给ubuntu分配了64G的磁盘空间&#xff0c;所以我大概还能扩容34G…

linux学习:标准IO

目录 接口 打开文件 关闭文件 读写 每次一个字符的读写标准 IO 函数接口 每次一行的读写标准 IO 函数接口 每次读写若干数据块的标准 IO 函数接口 获取或设置文件当前位置偏移量 标准格式化 IO 函数 系统 IO 的最大特点一个是更具通用性&#xff0c;不管是普通文件、管…

web笔记再整理

前四天笔记在此连接: web前端笔记表单练习题五彩导航栏练习题-CSDN博客https://blog.csdn.net/simply_happy/article/details/136917265?spm1001.2014.3001.5502 # 1.边框弧度​ div {​ width: 300px;​ height: 50px;​ background-color: aqua;​ …

【刷题】图论——最小生成树:Prim、Kruskal【模板】

假设有n个点m条边。 Prim适用于邻接矩阵存的稠密图&#xff0c;时间复杂度是 O ( n 2 ) O(n^2) O(n2)&#xff0c;可用堆优化成 O ( n l o g n ) O(nlogn) O(nlogn)。 Kruskal适用于稀疏图&#xff0c;n个点m条边&#xff0c;时间复杂度是 m l o g ( m ) mlog(m) mlog(m)。 Pr…

基于单片机的智能模拟路灯控制系统

摘 要: 随着电力资源的紧缺,以及光污染和雾霾天气的影响,更智能化的路灯设计对人们的日常生活意义重大。本文的智能路灯控制系统是基于单片机的控制器,通过介绍该系统相应的硬件设计和软件设计,实现定时开关和依具体情况是否需要来开关路灯和进行亮度调节,并且具有自检功能…

Springboot+Vue项目-基于Java+MySQL的房产销售系统(附源码+演示视频+LW)

大家好&#xff01;我是程序猿老A&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f49e;当前专栏&#xff1a;Java毕业设计 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f380; Python毕业设计 &…

谷歌现在被授权在云端托管机密数据

谷歌公共部门在周二为其美国政府客户实现了一个重要里程碑&#xff0c;宣布国防部授权其云平台托管秘密和绝密机密数据。 这项认证立即使谷歌的云产品与竞争对手亚马逊网络服务、 微软和甲骨文相比更具竞争力&#xff0c;因为它们在国防部和情报机构内争夺价值数十亿美元的业…

opencv 多线程读取和显示摄像头【python源码】

在Python中&#xff0c;使用OpenCV库实现多线程读取和显示摄像头通常涉及创建多个线程&#xff0c;每个线程负责从摄像头捕获视频帧并显示它们。但是&#xff0c;请注意&#xff0c;OpenCV本身并不直接支持多线程显示&#xff0c;因为cv2.imshow通常是在主线程中运行的。然而&a…

明明设置数字居中对齐,为什么excel的数字却不居中?

有时候在excel里&#xff0c;选中数据&#xff0c;设置对齐方式 左右居中&#xff0c;然而&#xff0c;数字却怎么都不居中&#xff0c;为什么呢&#xff1f; 1.按快捷键Ctrl1&#xff0c;打开单元格自定义格式对话框&#xff0c;看到是初始界面是在数字的会计专用&#xff0c;…

蓝桥杯python速成

总写C&#xff0c;脑子一热&#xff0c;报了个Python&#xff08;有一点想锤死自己&#xff09;&#xff0c;临时抱佛脚了 1.list的插入删除 append extend insert&#xff08;在索引位插入99&#xff09;---忘记用法别慌&#xff0c;用help查询 remove&#xff08;去掉第一个3…

【测试开发学习历程】python类的继承

目录 1 继承的概念 2 继承的写法 3 子类继承父类的属性和方法 4 子类新增父类没有的属性和方法 5 子类重写父类的属性和方法 6 super超类的使用 7 多继承 1 继承的概念 继承是类与类之间的一种关系&#xff0c;子类继承父类。通过继承可以使得子类能够拥有父类的属性和方…

scanf()返回转换成功的个数

一、概要 1、scanf()的读取与返回 scanf()&#xff0c;敲下回车进行一次读取&#xff0c;如果没有读到或没有读够&#xff0c;就继续等待输入 scanf()一次可以读取一个&#xff0c;也可以读取多个&#xff0c;多个之间用空格隔开 读取的数据按照%后面的字符格式进行转换&am…