时间序列分析 # 平稳性检验和ARMA模型的识别与定阶 #R语言

  1. 掌握单位根检验的原理并能解读结果;
  2. 掌握利用序列的自相关图和偏自相关图识别模型并进行初步定阶。

原始数据在文末!!!

练习1、根据某1971年9月-1993年6月澳大利亚季度常住人口变动(单位:千人)的数据(行数据)(题目1数据.txt),求:

(1)通过时序图、样本自相关图、单位根检验,判断该序列的平稳性;

(2)判断该序列的纯随机性;

(3)如果序列平稳且非白噪声,绘制样本自相关图(ACF)和偏自相关图(PACF),根据相关性特征,选择适当模型拟合该序列的发展。

data1 <- scan("F:/时间序列分析/实验5/习题数据/题目1数据.txt")
x1 <- ts(data1,start = c(1971,3),frequency = 4)
plot(x1)#时序图
acf(x1)#自相关图
install.packages("aTSA")
library(aTSA)
adf.test(x1)#单位根检验for(i in 1:2)print(Box.test(x1,type = "Ljung-Box",lag = 6*1))#白噪声检验
pacf(x1)#偏自相关图

结果分析:

  1. 时序图:

该序列始终在常数50附近波动,且波动范围有界。无明显的趋势性或周期性。该序列是平稳序列。

自相关图:

显示除了lag=0.75和lag=2的自相关系数在2倍标准差范围之外,其他阶数的自相关系数都在2倍标准差范围内波动。可以判断该序列具有短期相关性,进一步确定序列平稳。

单位根检验:

检验结果显示该序列可认为是平稳序列(带漂移项1-2阶滞后模型和既有漂移项又有趋势项的1-2阶滞后模型的P值小于0.05)。

adf.test(x1)

Augmented Dickey-Fuller Test

alternative: stationary

Type 1: no drift no trend

     lag    ADF p.value

[1,]   0 -2.719   0.010

[2,]   1 -1.531   0.128

[3,]   2 -0.928   0.345

[4,]   3 -0.698   0.428

Type 2: with drift no trend

     lag    ADF p.value

[1,]   0 -10.12   0.010

[2,]   1  -6.41   0.010

[3,]   2  -3.56   0.010

[4,]   3  -2.32   0.207

Type 3: with drift and trend

     lag    ADF p.value

[1,]   0 -10.48  0.0100

[2,]   1  -6.88  0.0100

[3,]   2  -3.92  0.0172

[4,]   3  -2.57  0.3362

----

Note: in fact, p.value = 0.01 means p.value <= 0.01

2.白噪声检验:

延迟6阶和延迟12阶的LB统计量的P值为都小于α=0.05,则拒绝原假设,认为序列不是白噪声序列。

    Box-Ljung test

data:  x1

X-squared = 17.858, df = 6, p-value = 0.006597

    Box-Ljung test

data:  x1

X-squared = 17.858, df = 6, p-value = 0.006597

3.偏自相关图:

除了lag=0.75,lag=1,lag=1.75偏自相关系数非常显著地≠0,之后其他阶数的偏自相关系数都迅速地向0值靠拢。

练习2、根据某城市过去四年每个月人口净流入数量(行数据)(题目2数据.txt),求:

(1)通过时序图、样本自相关图、单位根检验,判断该序列的平稳性;

(2)判断该序列的纯随机性;

(3)如果序列平稳且非白噪声,绘制样本自相关图(ACF)和偏自相关图(PACF),根据相关性特征,选择适当模型拟合该序列的发展。

Data2 <- scan("F:/时间序列分析/实验5/习题数据/题目2数据.txt")
x2 <- ts(data2,start = c(2018,1),frequency = 12)
plot(x2)#时序图
acf(x2)#自相关图library(aTSA)
adf.test(x2)#单位根检验for(i in 1:2)print(Box.test(x2,type = "Ljung-Box",lag = 6*1))#白噪声检验
pacf(x2)#偏自相关图

结果分析:

  1. 时序图:

该序列始终在常数4附近波动,且波动范围有界。无明显的趋势性或周期性。该序列是平稳序列。

自相关图:

显示除了lag=1/12的自相关系数在2倍标准差范围之外,其他阶数的自相关系数都在2倍标准差范围内波动。可以判断该序列具有短期相关性,进一步确定序列平稳。

单位根检验:

检验结果显示该序列可认为是平稳序列(带漂移项1-2阶滞后模型和既有漂移项又有趋势项的1-3阶滞后模型的P值小于0.05)。

Augmented Dickey-Fuller Test

alternative: stationary

Type 1: no drift no trend

     lag    ADF p.value

[1,]   0 -1.121   0.274

[2,]   1 -0.960   0.331

[3,]   2 -0.731   0.413

[4,]   3 -0.986   0.322

Type 2: with drift no trend

     lag   ADF p.value

[1,]   0 -4.03  0.0100

[2,]   1 -4.49  0.0100

[3,]   2 -3.11  0.0356

[4,]   3 -2.93  0.0503

Type 3: with drift and trend

     lag   ADF p.value

[1,]   0 -4.54  0.0100

[2,]   1 -5.74  0.0100

[3,]   2 -4.33  0.0100

[4,]   3 -3.81  0.0255

----

Note: in fact, p.value = 0.01 means p.value <= 0.01

2.白噪声检验:

延迟6阶和延迟12阶的LB统计量的P值为都大于α=0.05,则接受原假设,认为序列是白噪声序列。

Box-Ljung test

data:  x2

X-squared = 11.938, df = 6, p-value = 0.06336

Box-Ljung test

data:  x2

X-squared = 11.938, df = 6, p-value = 0.06336

3.偏自相关图:

除了1/12阶偏自相关系数非常显著地≠0,之后其他阶数的偏自相关系数都迅速地向0值靠拢,序列平稳。

练习3、根据1975-1980年夏威夷岛莫那罗亚火山每月释放的CO2数据(题目3数据.txt),求:

(1)通过时序图、样本自相关图、单位根检验,判断该序列的平稳性;

(2)判断该序列的纯随机性;

(3)如果序列平稳且非白噪声,绘制样本自相关图(ACF)和偏自相关图(PACF),根据相关性特征,选择适当模型拟合该序列的发展。

data3 <- scan("F:/时间序列分析/实验5/习题数据/题目3数据.txt")
x3 <- ts(data3,start = c(1975,1),frequency = 12)
plot(x3)#时序图
acf(x3)#自相关图library(aTSA)
adf.test(x3)#单位根检验for(i in 1:2)print(Box.test(x3,type = "Ljung-Box",lag = 6*1))#白噪声检验
pacf(x3)

结果分析:

  1. 时序图:

该序列呈现出逐年的上升趋势且存在明显的周期性。该序列不是平稳序列。

自相关图:

显示大部分的自相关系数在2倍标准差范围之外,可认为该自相关数很大,显著非零。可以判断该序列是非序列平稳。

单位根检验:

检验结果显示该序列可认为是平稳序列(带漂移项1阶滞后模型和既有漂移项又有趋势项的1-3阶滞后模型的P值小于0.05)。

Augmented Dickey-Fuller Test

alternative: stationary

Type 1: no drift no trend

     lag   ADF p.value

[1,]   0 0.770   0.861

[2,]   1 0.277   0.720

[3,]   2 0.417   0.760

[4,]   3 0.448   0.769

Type 2: with drift no trend

     lag   ADF p.value

[1,]   0 -1.63   0.472

[2,]   1 -4.16   0.010

[3,]   2 -2.43   0.164

[4,]   3 -1.64   0.465

Type 3: with drift and trend

     lag   ADF p.value

[1,]   0 -2.49   0.368

[2,]   1 -8.69   0.010

[3,]   2 -6.03   0.010

[4,]   3 -5.25   0.010

----

Note: in fact, p.value = 0.01 means p.value <= 0.01

2.白噪声检验:

延迟6阶和延迟12阶的LB统计量的P值为都小于α=0.05,则接受原假设,认为序列不是白噪声序列。

Box-Ljung test

data:  x3

X-squared = 139.5, df = 6, p-value < 2.2e-16

Box-Ljung test

data:  x3

X-squared = 139.5, df = 6, p-value < 2.2e-16

3.偏自相关图:

除了延迟1阶的偏自相关系数非常显著地≠0,之后其他阶数的偏自相关系数都迅速地向0值靠拢,这是一个典型的相关系数1阶结尾特征。

需要本练习原始数据请自行跳转下载:

博文:‘平稳性检验和ARMA模型的识别与定阶’训练数据资源-CSDN文库

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/812060.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一个开源跨平台嵌入式USB设备协议:TinyUSB

概述 TinyUSB 是一个用于嵌入式系统的开源跨平台 USB 主机/设备堆栈&#xff0c;设计为内存安全&#xff0c;无需动态分配&#xff0c;线程安全&#xff0c;所有中断事件都被推迟&#xff0c;然后在非 ISR 任务函数中处理。查看在线文档以获取更多详细信息。 源码链接&#xff…

Redis从入门到精通(十五)Redis分布式缓存(三)Redis分片集群的搭建和原理分析

文章目录 前言5.4 分片集群5.4.1 搭建分片集群5.4.2 散列插槽5.4.3 集群伸缩5.4.3.1 需求分析5.4.3.2 创建新的Redis实例5.4.3.3 添加新节点到Redis集群5.4.3.4 转移插槽 5.4.4 故障转移5.4.4.1 自动故障转移5.4.4.2 手动故障转移 5.4.5 RedisTemplate 5.5 小结 前言 Redis分布…

kali工具----枚举工具

一、枚举工具 枚举是一类程序&#xff0c;它允许用户从一个网络中收集某一类的所有相关信息。本节将介绍DNS枚举和SNMP枚举技术。DNS枚举可以收集本地所有DNS服务和相关条目。DNS枚举可以帮助用户收集目标组织的关键信息&#xff0c;如用户名、计算机名和IP地址等&#xff0c;…

【Qt】界面优化

目录 一、QSS 1.1 基本语法 1.2 QSS设置方法 1.2.1 指定控件样式设置 1.2.2 全局样式设置 1.2.3 从文件加载样式表 1.2.4 使用Qt Designer编辑样式 1.3 选择器 1.3.1 介绍 1.3.2 子控件选择器 1.3.3 伪类选择器 1.4 样式属性(盒模型) 1.5 代码示例(登录界面) 二、…

OSCP靶场--Banzai

OSCP靶场–Banzai 考点(ftp爆破 webshell上传web1访问403web2可以访问webshell反弹mysql udf提权) 1.nmap扫描 ## nmap扫描一定要使用 -p- 否则容易扫不全端口 ┌──(root㉿kali)-[~/Desktop] └─# nmap -sV -sC 192.168.158.56 -Pn -p- --min-rate 2500Starting Nmap 7.…

机器学习前导——PyCharm PyTorch Python3 机器学习

机器学习前导——PyCharm & pytorch & Python3 & 机器学习 文章目录 前言PyCharmPyTorchPython3机器学习联系 前言 这学期选了《机器学习》&#xff0c;第一次接触&#xff0c;对一些专有名词很陌生。 PyCharm PyCharm是一款由JetBrains开发的软件&#xff0c…

STM32 串口接收定长,不定长数据

本文为大家介绍如何使用 串口 接收定长 和 不定长 的数据。 文章目录 前言一、串口接收定长数据1. 函数介绍2.代码实现 二、串口接收不定长数据1.函数介绍2. 代码实现 三&#xff0c;两者回调函数的区别比较四&#xff0c;空闲中断的介绍总结 前言 一、串口接收定长数据 1. 函…

SpringBoot3 + Vue3 + Uniapp + uView + Elenment 实现动态二级分类以及二级分类的管理

SpringBoot3 Vue3 Uniapp uView Elenment 实现动态二级分类以及二级分类的管理 1. 效果展示1.1 前端显示效果1.2 后台管理一级分类1.3 后台管理二级分类 2. 后端代码2.1 GoodsCategoryController.java2.2.1 GoodsCategoryMapper.java2.2.2 GoodsCategorySonMapper.java2.3.…

Zookeeper的集群搭建和ZAB协议详解

Zookeeper的集群搭建 1&#xff09;zk集群中的角色 Zookeeper集群中的节点有三个角色&#xff1a; Leader&#xff1a;处理集群的所有事务请求&#xff0c;集群中只有一个LeaderFollwoer&#xff1a;只能处理读请求&#xff0c;参与Leader选举Observer&#xff1a;只能处理读…

数仓维度建模

维度建模 数仓建模方法1. 范式建模法&#xff08;Third Normal Form&#xff0c;3NF&#xff09;2. 维度建模法&#xff08;Dimensional Modeling&#xff09;3. 实体建模法&#xff08;Entity Modeling&#xff09; 维度建模1. 事实表事实表种类事务事实表周期快照事实表累计快…

强大的数据分析计算软件:Stata 15 for Mac 激活版

Stata 15 for Mac是一款高级统计分析软件&#xff0c;具有强大的数据管理和数据提取工具。以下是其功能和特点的详细介绍&#xff1a; 软件下载&#xff1a;Stata 15 for Mac 激活版版下载 数据管理&#xff1a;Stata 15 for Mac支持多种数据库、数据格式和计算机语言&#xff…

如何在淘~宝接单和解决别人问题-java开发

如下这是一个连接&#xff1a;https://s.tb.cn/c.0vDtL3https://s.tb.cn/c.0vDtL3 解决各种问题。可付费咨询

【JAVA基础篇教学】第四篇:Java条件语句

博主打算从0-1讲解下java基础教学&#xff0c;今天教学第四篇&#xff1a; Java条件语句。 在Java中&#xff0c;条件语句用于根据不同的条件执行不同的代码块。Java提供了if、else if和else等关键字来实现条件判断。 一、if语句 if语句用于执行一个代码块&#xff0c;如果给…

TripoSR: Fast 3D Object Reconstruction from a Single Image 论文阅读

1 Abstract TripoSR的核心是一个基于变换器的架构&#xff0c;专为单图像3D重建设计。它接受单张RGB图像作为输入&#xff0c;并输出图像中物体的3D表示。TripoSR的核心包括&#xff1a;图像编码器、图像到三平面解码器和基于三平面的神经辐射场&#xff08;NeRF&#xff09;。…

【网络】服务器间FTP传输文件被限速问题的排查(未达最优解)

服务器间FTP传输文件被限速问题的排查 问题描述具体问题软硬件环境文件传输方式的2种策略FTP相关信息问题表现问题解决结论 发散探讨——基于此问题进行发散研究相关知识从FileZilla软件入手从Windows入手从Linux入手从协议入手Windows和Linux的文件共享&#xff0c;分别是使用…

状态模式:管理对象状态转换的动态策略

在软件开发中&#xff0c;状态模式是一种行为型设计模式&#xff0c;它允许一个对象在其内部状态改变时改变它的行为。这种模式把与特定状态相关的行为局部化&#xff0c;并且将不同状态的行为分散到对应的状态类中&#xff0c;使得状态和行为可以独立变化。本文将详细介绍状态…

ORA-00600: internal error code, arguments: [krbcbp_9]

解决方案 1、清理过期 2、control_file_record_keep_time 修改 恢复时间窗口 RMAN (Recovery Manager) 是 Oracle 数据库的备份和恢复工具。在 RMAN 中&#xff0c;可以使用“恢复窗口”的概念来指定数据库可以恢复到的时间点。这个时间点是基于最近的完整备份或增量备份。 …

[Linux][进程控制][进程程序替换]详细解读

目录 1.进程创建1.fork函数初识2.fork函数返回值3.写时拷贝4.fork之后&#xff0c;父子进程代码共享5.fork常规用法6.fork调用失败的原因 2.进程终止0.进程终止时&#xff0c;操作系统做了什么&#xff1f;1.进程退出场景2.进程常见退出方法4 _exit函数(系统接口)4.exit函数(库…

html 引入vue Element ui 的方式

第一种&#xff1a;使用CDN的方式引入 <!--引入 element-ui 的样式&#xff0c;--> <link rel"stylesheet" href"https://unpkg.com/element-ui/lib/theme-chalk/index.css"> <!-- 必须先引入vue&#xff0c; 后使用element-ui --> <…

【单片机毕业设计8-基于stm32c8t6的RFID校园门禁系统】

【单片机毕业设计8-基于stm32c8t6的RFID校园门禁系统】 前言一、功能介绍二、硬件部分三、软件部分总结 前言 &#x1f525;这里是小殷学长&#xff0c;单片机毕业设计篇8基于stm32的RFID校园门禁系统 &#x1f9ff;创作不易&#xff0c;拒绝白嫖可私 一、功能介绍 -----------…