【数据结构】06图

  • 1. 定义
    • 1.1 无向图和有向图
    • 1.2 度、入度和出度
    • 1.3 图的若干定义
    • 1.4 几种特殊的图
  • 2. 图的存储
    • 2.1 邻接矩阵-顺序存储(数组)
    • 2.2 邻接表-顺序存储+链式存储(数组+链表)
    • 2.3 十字链表-适用于有向图
    • 2.4 邻接多重表-适用于无向图
  • 3. 图的基本操作
    • EdgeExist(G,v,w)
    • AllAdjVex(G,v)
    • InsertVex(G,v)
    • DeleteVex(G,v)
    • InsertEdge(G,v,w)
  • 4. 图的遍历
    • 4.1 广度优先搜索(BFS)
    • 4.2 深度优先搜索(DFS)

1. 定义

(Graph)是一种比线性表和树更复杂的数据结构。在线性表中,数据元素之间是一对一的关系,每个数据元素只有一个直接前驱和一个直接后继。在树形结构中,数据元素之间有明显的层次关系,上一层的数据元素(结点)和下一层的数据元素(结点)是一对多的关系。而在图形结构中,数据元素之间的关系是任意的,是多对多的关系。
在图中,数据元素通常称作顶点(Vertex),简称V,是有穷非空的集合,记为 V = { v 1 , v 2 , . . . v n } V=\{v_1,v_2,...v_n\} V={v1,v2,...vn},|V|表示顶点个数。两个顶点之间的关系称作(Edge),简称E,是有穷的集合,记为 E = ( u , v ) ∣ u ∈ V , v ∈ V E={(u,v)|u\in{V},v\in{V}} E=(u,v)uV,vV,|E|表示边的条数。
图简称G,由顶点集V和边集E组成,记作G=(V,E)
在这里插入图片描述
第三幅图不是图的数据结构

1.1 无向图和有向图

在这里插入图片描述
图G1中,每条边是没有方向的(无向边),则图G1是无向图。
图中的边是顶点的无序对,例如顶点V1和V2之间的边,记作(V1,V2)或(V2,V1)都可以。
G1=(V1,E1)
V1={V1,V2,V3,V4,V5}
E1={(V1,V2),(V1,V3),(V2,V4),(V3,V5)}
在这里插入图片描述
图G2中,每一条边是有方向的(有向边),则图G2是有向图
图中的边是顶点的有序对,例如顶点V2和V1之间的边只能记作<V2,V1>
G2={V2,E2}
V2={V1,V2,V3,V4,V5}
E2={<V2,V1>,<V1,V3>,<V3,V5>,<V5,V3>}
有向边也称为,<V2,V1>称为顶点V2到顶点V1的弧。V2是弧尾(初始点),V1是弧头(终端点)。顶点V2邻接到顶点V1。
简单图:不存在重复的边,不存在顶点到自身的边

1.2 度、入度和出度

无向图:

  • 顶点的度:与该顶点关联的边的条数。图G1中,TD(V1)=2,TD(V2)=2…
  • 无向图中全部顶点的度的和=边数X2

有向图:

  • 入度:以该顶点为终点的边的条数:ID(V1) = 1,TD(V2)=0
  • 出度:以该顶点为起点的边的条数:OD(V1)=1,OD(V2)=1
  • 度:顶点的度是该顶点的入度和出度之和,TD(V1)=ID(V1)+OD(V1)=2
  • 有向图中全部顶点的入度之和等于出度之和

1.3 图的若干定义

路径:从顶点Vx到Vy的顶点序列
回路:第一个顶点和最有一个顶点相同的路径成为回路或环
简单路径:在路径的序列中,顶点没有重复出现
简单回路:除第一个顶点和最后一个顶点外,其他顶点没有重复出现
路径长度:路径上边的条数
顶点到顶点的距离:顶点之间最短路径的长度,如果不存在路径,记为无穷 ∞ \infin
在无向图中,如果顶点Vx到顶点Vy有路径,表示Vx和Vy是连通的。
在有向图中,如果顶点Vx到顶点Vy和顶点Vy到顶点Vx都有路径,表示Vx和Vy是强连通的。
连通图:任意两个顶点都是连通的。
强连通图:任意两个顶点都是强连通的。
生成子图:生成子图包含了原图的全部顶点和若干条边
连通分量:无向图中,极大的连通子图称之为连通分量(是连通子图 每个连通子图尽可能包含更多的顶点和边)
强连通分量:有向图中,极大的强连通子图称之为强连通分量(是强连通子图 每个强连通子图金肯包含更多的顶点和边)
生成树:无向连通图中,生成树是指包含了全部顶点的极小连通子图(连通图 全部顶点 边最少)
带权图:在一个图中,边可以表示某种含义的数值,例如顶点之间的距离,该数值称为边的权值。如果图的边上带了权值,那么该图称为带权图,或网。带权图中,某条路径上全部边的权值之和,称为该路径的带权路径长度。

1.4 几种特殊的图

  • 完全图
    • 无向完全图:图中任意两个顶点都存在一条边
    • 有向完全图:图中任意两个顶点都存在方向相反的两条边
  • 稀疏图和稠密图:边很少的图称为稀疏图,反之称为稠密图
  • 树:不存在回路的连通无向图
  • 有向树:有且仅有一个结点的入度为0,除树根外的结点入度为1,从树根到任一结点有一条有向通路

2. 图的存储

图的存储方式有四种:邻接矩阵、邻接表、十字链表、邻接多重表

2.1 邻接矩阵-顺序存储(数组)

图的邻接矩阵(Adjacency Matrix)存储方式是用两个数组来表示图。一个一维数组存储顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息。
在这里插入图片描述
在这里插入图片描述

  • 对于图:结点之间有连接则边表中对应项记为1,无连接则记为0。但是无向图是A-C和C-A都有,然而有向图则只有C-A没有A-C,需要看清方向。
  • 在无向图的邻接矩阵中,顶点的度为该顶点所在行或列中非零元素的个数。
  • 在有向图的邻接矩阵中,顶点的出度为该顶点所在中的非零元素的个数,入度为该顶点所在中的非零元素个数。顶点的度=出度+入度
    对于A顶点:无向图的度=3,有向图的度=1+2=3
  • 对于带权图,把每条边的权值存入邻接矩阵,如果顶点之间不存在边存入无穷表示
// 利用邻接矩阵存储图
typedef char VertType; // 定义顶点的数据类型
typedef int EdgeType; // 定义边权的数据类型
#define MAXVNUM 100 // 顶点的最大数值
#define INFINITY 65536 // 无穷常量,也可以用边的权值不可能出现的值struct MGraph
{VertType vexs[MAXVNUM]; // 顶点表EdgeType edges[MAXVNUM][MAXVNUM]; // 带权边表,邻接矩阵int vexnum, arcnum; // 顶点数|V|和边数|E|
};

2.2 邻接表-顺序存储+链式存储(数组+链表)

顶点的信息存放在一维数组中,每个顶点的边的信息存放在边链表中。
在这里插入图片描述

// 边链表结构体
struct ENode
{int adjvex; // 邻接点域,存储该顶点对应的下标EdgeType info; // 存储权值ENode* next; // 指针域,指向下一个邻接顶点
};
// 顶点结构体
struct VNode 
{VertType data; // 数据域,存储顶点信息ENode* first; // 边表头指针
};
// 图的结构体
struct AdjListGraph
{VNode vexs[MAXVNUM]; //顶点数组int vexnum,arcnum; // 顶点数和边数
};

2.3 十字链表-适用于有向图

十字链表就是有两个边链表的邻接表。
在这里插入图片描述

2.4 邻接多重表-适用于无向图

1)边链表结点有冗余,无向图中对于A-B之间的边,在A的边链表中有B,在B的边链表中有A,只需要一个就能表达含义了。
2)删除边和顶点操作很麻烦,时间复杂度高。
在这里插入图片描述

3. 图的基本操作

EdgeExist(G,v,w)

判断图G中是否存在从顶点v到顶点w的边,(v,w)或<v,w>,如(G,C,D)。

  • 邻接矩阵:检查C行D列是否为1。
  • 邻接表中:检查C顶点的边链表中是否有顶点D。

AllAdjVex(G,v)

列出图G中与顶点v邻接的边,如(G,C)
对于无向图:

  • 邻接矩阵:检查C整(行)列,输出为1对应的顶点
  • 邻接表:检查顶点C的边链表,输出顶点。

对于有向图:邻接的边包括出边和入边

  • 邻接矩阵:检查C整行,输出为1对应的顶点(出边);检查C整列,输出为1对应的顶点(入边)。
  • 邻接表:访问顶点C对应的边链表,输出顶点(出边);依次访问每个顶点(除C自身)的边链表,如果有C,则输出该顶点(入边)。

InsertVex(G,v)

在图G中插入顶点v,此时不需要插入边,只用插入顶点。

DeleteVex(G,v)

从图G中删除顶点v,如(G,C)。删除顶点C。(真删除和伪删除)
对于无向图:

  • 邻接矩阵:删除顶点表中的C,后续元素前移;邻接矩阵中删除C对应的行列,并移动元素
  • 邻接表:删除顶点表中的C,以及对应的边链表。还要遍历其他顶点,删除边链表中的C

InsertEdge(G,v,w)

在图G中插入一条从顶点v到w的边。如(G,C,D)
无向图

  • 邻接矩阵:C行D列和D行C列都需要置为1
  • 邻接表:顶点C的边链表中插入新结点D;顶点D的边链表中插入新结点C。
    有向图:
  • 邻接矩阵:C行D列置为1
  • 邻接表:顶点C的边链表中插入新结点D

4. 图的遍历

4.1 广度优先搜索(BFS)

图的广度优先搜索类似于树的层次遍历,需要使用一个辅助队列和辅助数组(用于记录已经访问过的数组)来实现
在这里插入图片描述
图的遍历可以从任意一个结点开始,假设从顶点2开始。顶点2入队,并查找visited数组中对应的下标是否已经访问,没有置为true。
在这里插入图片描述
出队队头元素,并将其邻接点未访问顶点入队,包括5,6,3,1
在这里插入图片描述
出队队头元素,并将其邻接点未访问顶点入,5出队后没有入队,6出队后入队7
在这里插入图片描述出队队头元素,并将其邻接点未访问顶点入,3出队后没有元素入队,1出队后入队4
在这里插入图片描述
出队队头元素,并将其邻接点未访问顶点入,7出队后没有元素入队,4出队后入队8,9
在这里插入图片描述
出队队头元素,8,9。队列为空,遍历完成。

4.2 深度优先搜索(DFS)

图的深度优先搜索与图的先序遍历类似。可以利用递归或者栈的形式实现。具体就不在这里展开了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/811896.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式代码实战-建造者模式

1、问题描述 小明家新开了一家自行车工厂&#xff0c;用于使用自行车配件&#xff08;车架 frame 和车轮 tires &#xff09;进行组装定制不同的自行车&#xff0c;包括山地车和公路车。 山地车使用的是Aluminum Frame&#xff08;铝制车架&#xff09;和 Knobby Tires&#x…

【随笔】Git 高级篇 -- 管理多分支 git rebase(二十二)

&#x1f48c; 所属专栏&#xff1a;【Git】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#x1f496; 欢迎大…

PyTorch环境配置问题

为什么深度学习都是用英伟达的显卡&#xff1f; 首先我们需要了解什么是CUDA&#xff1f; CUDA&#xff08;Compute Unified Device Architecture&#xff09;&#xff0c;是显卡厂商 NVIDIA 推出的运算平台。 CUDA就类似于编程语言&#xff0c;开发者和显卡通过CUDA进行交流…

Android网络抓包--Charles

一、Android抓包方式 对Https降级进行抓包&#xff0c;降级成Http使用抓包工具对Https进行抓包 二、常用的抓包工具 wireshark&#xff1a;侧重于TCP、UDP传输层&#xff0c;HTTP/HTTPS也能抓包&#xff0c;但不能解密HTTPS报文。比较复杂fiddler&#xff1a;支持HTTP/HTTPS…

【SpringBoot】mybatis-plus实现增删改查

mapper继承BaseMapper service 继承ServiceImpl 使用方法新增 save,updateById新增和修改方法返回boolean值,或者使用saveOrUpdate方法有id执行修改操作,没有id 执行新增操作 案例 Service public class UserService extends ServiceImpl<UserMapper,User> {// Au…

用于大规模数据集(大于1TB)的并行运算的MapReduce是怎么实现的?

MapReduce 是一种编程模型&#xff0c;用于处理和生成大数据集。MapReduce 分为两个阶段&#xff1a;Map 阶段和 Reduce 阶段。 Map 阶段&#xff1a;在这个阶段&#xff0c;输入数据被拆分成不同的数据块&#xff0c;这些数据块被分发到各个 Map 任务上。每个 Map 任务对输入的…

Golang | Leetcode Golang题解之第24题两两交换链表中的节点

题目&#xff1a; 题解&#xff1a; func swapPairs(head *ListNode) *ListNode {dummyHead : &ListNode{0, head}temp : dummyHeadfor temp.Next ! nil && temp.Next.Next ! nil {node1 : temp.Nextnode2 : temp.Next.Nexttemp.Next node2node1.Next node2.Nex…

数据结构(算法)

总结&#xff0c;建议看EXCEL的《算法》页签&#xff0c;不然感觉有点乱 备注原理/步骤时间复杂度空间复杂度串的应用模式匹配简单/暴力O(mn) KMP  O(mn) 树的应用树哈夫曼树1、带权路径长度WPL 2、外部排序-最佳归并树1、哈夫曼树的度&#xff0c;只有0和m&#xff08;m叉…

Linux上下载部署zentao v15.5及具体的使用

1.先查询一下Linux的操作系统的位数&#xff0c;确保下载的文件位数与os的一致 [rootlocalhost xiaoming]# uname -m x86_64 [rootlocalhost xiaoming]# getconf LONG_BIT 64 2.下载zentao的Linux压缩包 wget https://www.zentao.net/dl/zentao/15.5/ZenTaoPMS.15.5.zbox…

【opencv】示例-inpaint.cpp 图像修复是通过填充损坏图像部分从而修复这些损坏的过程...

原始图像 这段代码展示了一个使用OpenCV库进行图像修复的例子。它首先包含了处理图像编码、解码、显示、处理和照片处理所必要的OpenCV模块的头文件。然后利用cv和std命名空间下的类和方法。通过定义一个鼠标回调函数onMouse来处理图像上的绘图操作&#xff0c;并通过主函数mai…

基于大数据的全国热门景点数据可视化分析系统

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目简介 本文将介绍如何使用Python中的Pandas库进行数据挖掘&#xff0c;并结合Flask Web框架实现一个旅游景点数据分析系统。该系统将包括以下功能模块&#xff1a;热门景点概况、景点星级与评分分析、景…

如何使用 Grafana 监控文件系统状态

当 JuiceFS 文件系统部署完成并投入生产环境&#xff0c;接下来就需要着手解决一个非常重要的问题 —— 如何实时监控它的运行状态&#xff1f;毕竟&#xff0c;它可能正在为关键的业务应用或容器工作负载提供持久化存储支持&#xff0c;任何小小的故障或性能下降都可能造成不利…

HCIP-Datacom(H12-821)题库补充(4月12日)

最新 HCIP-Datacom&#xff08;H12-821&#xff09;完整题库请扫描上方二维码访问&#xff0c;持续更新中。 在BGP进程下&#xff0c;Aggregate命令中的detail&#xff3f;suppressed关键字的作用是以下哪一项&#xff1f; A&#xff1a;抑制生成的聚合路由下发IP路由表 B&…

vueRouter动态路由(实现菜单权限控制)

一、权限控制管理&#xff1a; 对于企业级的项目, 我们可能需要对项目做权限控制管理, 实现不同角色的用户登录项目根据所拥有的权限访问不同的页面内容&#xff0c;此时就需要使用到动态路由来对权限页面做限制。 【使用vue-router实现动态路由&#xff0c;达到实现菜单权限…

React + three.js 实现人脸动捕与3D模型表情同步

系列文章目录 React 使用 three.js 加载 gltf 3D模型 | three.js 入门React three.js 3D模型骨骼绑定React three.js 3D模型面部表情控制React three.js 实现人脸动捕与3D模型表情同步 示例项目(github)&#xff1a;https://github.com/couchette/simple-react-three-facia…

BI数据分析软件:行业趋势与功能特点剖析

随着数据量的爆炸性增长&#xff0c;企业对于数据的需求也日益迫切。BI数据分析软件作为帮助企业实现数据驱动决策的关键工具&#xff0c;在当前的商业环境中扮演着不可或缺的角色。本文将从行业趋势、功能特点以及适用场景等方面&#xff0c;深入剖析BI数据分析软件&#xff0…

IP证书申请流程

目录 域名与IP的关系 SSL证书绑定域名还是绑定IP&#xff1f; IP证书支持免费申请吗&#xff1f; 如何申请IP地址证书 IP类型的SSL证书&#xff0c;又称之为IP SSL&#xff0c;这种SSL证书是专门用于公网IP地址验证的一种数字证书。 主要功能就是解决IP地址明文传输的安全…

毅四捕Go设计模式笔记——代理模式

代理模式&#xff08;Proxy Pattern&#xff09; 为了解决什么问题&#xff1f; 代理模式用于在不直接访问实际对象的情况下&#xff0c;通过引入一个代理对象来控制和管理对该对象的访问。主要解决的问题是对原始对象的访问控制&#xff0c;以及在不改变原始对象接口的情况下…

bilibili PC客户端架构设计——基于Electron

众所周知&#xff0c;bilibili是个学习的网站&#xff0c;网页端和粉版移动端都非常的好用&#xff0c;不过&#xff0c;相对其它平台来说bilibili的PC客户端也算是大器晚成了。在有些场景PC客户端的优势也是显而易见的&#xff0c;比如&#xff0c;跓留电脑桌面的快捷、独立的…

C#在后台自动化截图指定网站并保存图片

先安装PuppeteerSharp的库 然后调用如下方法 private async Task ScreenShotAsync(string url){//using var browserFetcher new BrowserFetcher();//await browserFetcher.DownloadAsync();await using var browser await Puppeteer.LaunchAsync(new LaunchOptions { Headle…