文章目录
7.1 GAN基本概念
7.1.1 如何通俗理解GAN
7.1.2 GAN的形式化表示
7.1.3 GAN的目标函数是什么
7.1.4 GAN的目标函数和交叉熵有什么区别
7.1.5 GAN的Loss为什么降不下去
7.1.6 生成式模型、判别式模型的区别
7.1.7 什么是mode collapsing
7.1.8 如何解决mode collapsing
7.1 GAN基本概念
7.1.1 如何通俗理解GAN
生成对抗网络(GAN,Generative adversarial network)自从2014年被lan Goodfellow提出以来,掀起了一股研究热潮。GAN由生成器和判别器组成,生成器负责生成样本,判别器负责判断生成器的样本是否为真。生成器要尽可能迷惑判别器,而判别器要尽可能区分生成器生成的样本和真实样本。
在GAN的原作[1]中,作者将生成器比喻为印假钞票的犯罪分子,判别器则类比为警察。犯罪分子努力让钞票看起来逼真,警察则不断提升对于假钞的辨识能力。二者相互博弈,随着时间的进行,都会越来越强。那么类比于图像生成任务,生成器则不断生成尽可能逼真的假图像。判别器则判断图像是否是真实的图像,还是生成的图像,二者不断博弈优化。最终生成器生成的图像使得判别器完全无法判别真假。
7.1.2 GAN的形式化表示
上述例子只是简要介绍了一下GAN的思想,下面对于GAN做一个形式化的,更加具体的定义。通常情况下,无论是生成器还是判别器,我们都可以用神经网络来实现。那么,我们可以把通俗化的定义用下面这个模型表示:
上述模型左边是生成器G,其输入是,对于原始的GAN,是由高斯分布随机采样得到的噪声。噪声通过生成器得到了生成器的假样本。
生成的假样本与真实样本放到一起,被随机抽样送入到判别器D,由判别器去区分输入的样本是生成的假样本还是真实的样本。整个过程简单明了,生成对抗网络中的“生成对抗”主要体现在生成器和判别器之间的对抗。
7.1.3 GAN的目标函数是什么
对于上述神经网络模型,如果想要学习其参数,首先需要一个目标函数。GAN的目标函数定义如下:
第一部分:判别器的优化通过实现,为判别器的目标函数,
其第一项表示对于从真实数据分布中采用的样本,其被判别器判定为真实样本概率的数学期望。对于真实数据分布中采用的样本,其预测为正样本的概率当然是越接近1越好。因此希望最大化这一项。
第二项表示:对于从噪声分布当中采样得到的样本,经过生成器生成之后得到的生成图片,然后送入判别器,其预测概率的负对数的期望,这个值自然是越大越好,这个值越大,越接近0,也就代表判别器越好。
第二部分:生成器的优化通过来实现。注意,生成器的目标不是,即生成器不是最小化判别器的目标函数,二是最小化判别器目标函数的最大值,判别器目标函数的最大值代表的是真实数据分布生成数据分布的JS散度,JS散度可以度量分布的相似性,两个分布越接近,JS散度越小。
7.1.4 GAN的目标函数和交叉熵有什么区别
判别器目标函数写成离散形式即为:
可以看出,这个目标函数的交叉熵是一致的,即判别器的目标是最小化交叉熵损失,生成器的目标是最小化生成数据分布和真实数据分的JS散度。
7.1.5 GAN的Loss为什么降不下去
对于很多GAN的初学者在实践过程中可能会纳闷,为什么GAN的Loss一直降不下去。GAN到底什么时候才算收敛?其实,作为一个训练良好的GAN,其Loss就是降不下去的。衡量GAN是否训练好了,只能由人肉眼去看生成的图片质量是否好。不过,对于没有一个很好的评价是否收敛指标的问题,也有许多初学者做了一些研究,后文提及的WGAN就提出了一种新的Loss设计方式,较好的解决了难以判断收敛性的问题。
下面我们分析一下GAN的Loss为什么降不下去?对于判别器而言,GAN的Loss如下:
从可以看出,生成器和判别器的目的相反,也就是说两个生成器网络和判别器网络互为对抗,此消彼长。不可能Loss一直降到一个收敛的状态。
- 对于生成器,其Loss下降快,很有可能是判别器太弱,导致生成器很轻易的就“愚弄”了判别器。
- 对于判别器,其Loss下降快,意味着判别器很强,判别器很强则说明生成器生成的图像不够逼真,才使得判别器轻易判别,导致Loss下降很快。
也就是说,无论判别器,还是生成器。loss的高低不能代表生成器的好坏。一个好的GAN网络,其GAN Loss往往是不断波动的。
看到这里可能有点让人绝望,似乎判断模型是否收敛就只能看生成的图像质量了。实际上,后文探讨的WGAN,提出了一种新的loss度量方式,让我们可以通过一定的手段来判断模型是否收敛。
7.1.6 生成式模型、判别式模型的区别
对于机器学习模型,我们可以根据模型对数据的建模方式将模型分为两大类,生成式模型和判别式模型。如果我们要训练一个关于猫狗分类的模型,对于判别式模型,只需要学习二者差异即可。比如说猫的体型会比狗小一点。而生成式的模型则不一样,需要学习猫长什么样,狗长什么样。有了二者的长相以后,再根据长相去区分。具体而言:
- 生成式模型:由数据学习联合概率分布P(X,Y),然后由P(Y|X)=P(X,Y)/P(X)求出概率分布P(Y|X)作为预测的模型。该方法表示了给定输入X与产生输出Y的生成关系。
- 判别式模型:由数据直接学习决策函数Y=f(X)或条件概率分布P(Y|X)作为预测模型,即判别模型。判别方法关心的是对于给定的输入X,应该预测什么样的输出Y。
对于上述两种模型,从文字上理解起来似乎是不太直观。我们举个例子来阐述一下,对于性别分类问题,分别用不同的模型来做:
1)如果用生成式模型:可以训练一个模型,学习输入人的特征X和性别Y的关系。比如现在有下面一批数据:
Y(性别) | 0 | 1 | |
---|---|---|---|
X(特征) | 0 | 1/4 | 3/4 |
1 | 3/4 | 1/4 |
这个数据可以统计得到,即统计人的特征X=0,1...的时候,其类别为Y=0,1的概率。统计得到上述联合概率分布P(X,Y)后,可以学习一个模型,比如让二维高斯分布去拟合上述数据,这样就学习到了X,Y的联合分布。在预测时,如果我们希望给一个输入特征X,预测其类别,则需要通过贝叶斯公式得到条件概率分布才能进行推断:。
2)如果用判别式模型:可以训练一个模型,输入人的特征X,这些特征包括人的五官,穿衣风格,发型等。输出则是对于性别的判断概率,这个概率服从一个分布,分布的取值只有两个,要么男,要么女,记这个分布为Y。这个过程学习了一个条件概率分布P(Y|X),即输入特征X的分布已知条件下,Y的概率分布。
显然,从上面的分析可以看出,判别式模型似乎要方便的多,因为生成式模型要学习一个X,Y的联合分布往往需要很多数据,而判别式模型需要的数据则相对少,因为判别式模型更关注输入特征的差异性,不过生成式既然使用了更多数据来生成联合分布,自然也能够提供更多的信息,现在有一个样本(X,Y),其联合概率P(X,Y)经过计算特别小,那么可以认为这个样本是异常样本。这种模型可以用来做outlier detection。
7.1.7 什么是mode collapsing
某个模式(mode)出现大量重复样本,例如:
上图左侧的蓝色五角星表示真实样本空间,黄色的是生成的。生成样本缺乏多样性,存在大量重复。比如上图右侧中,红框里面人物反复出现。
7.1.8 如何解决mode collapsing
方法一:针对目标函数的改进方法
为了避免前面提到的由于优化maxmin导致mode跳来跳去的问题,UnrolledGAN采用修改生成器loss来解决。具体而言,UnrolledGAN在更新生成器时更新k次生成器,参考的Loss不是某一次的loss,是判别器后面k次迭代的loss。注意,判别器后面k次迭代不更新自己的参数,只计算loss用于更新生成器。这种方式使得生成器考虑到了后面k次判别器的变化情况,避免在不同mode之间切换导致的模式崩溃问题。此处务必和迭代k次生成器,然后迭代1次判别器区分开[8]。
DRAGAN则引入博弈论中的无后悔算法,改造其loss以解决mode collapse问题[9]。
前文所述的EBGAN则是加入VAE的重构误差以解决mode collapse。
方法二:针对网络结构的改进方法
Multi agent diverse GAN(MAD-GAN)采用多个生成器,一个判别器以保障样本生成的多样性。具体结构如下:
相比于普通GAN,多了几个生成器,且在loss设计的时候,加入一个正则项。正则项使用余弦距离惩罚三个生成器生成样本的一致性。
MRGAN则添加了一个判别器来惩罚生成样本的mode collapse问题。具体结构如下:
输入样本通过一个Encoder编码为隐向量,然后隐向量被Generator重构,训练时,Loss有三个。和(重构误差)用于指导生成real-like的样本。而则对和生成的样本进行判别,显然二者生成样本都是fake samples,所以这个判别器主要用于判断生成的样本是否具有多样性,即是否出现mode collapse。
方法三:Mini-batch Discrimination
Mini-batch Discrimination在判别器的中间层建立一个mini-batch layer用于计算基于L1距离的样本统计量,通过建立该统计量,实现了一个batch内某个样本与其他样本有多接近。这个信息可以被判别器利用到,从而甄别出哪些缺乏多样性的样本。对生成器而言,则要试图生成具有多样性的样本。