Facial Micro-Expression Recognition Based on DeepLocal-Holistic Network 阅读笔记

中科院王老师团队的工作,用于做微表情识别。
摘要:
Toimprove the efficiency of micro-expression feature extraction,inspired by the psychological studyof attentional resource allocation for micro-expression cognition,we propose a deep local-holisticnetwork method for micro-expression recognition.
为了提高微表情特征提取的效率,我们提出了受到微表情认知注意资源分配心理学研究启发的深度本地-整体网络方法。
The first is a Hierarchical Convolutional Recurrent Neural Network(HCRNN),whichextracts the local and abundant spatio-temporal micro-expression features.
第一个是分层卷积循环神经网络(HCRNN),用于提取局部且丰富的时空微表情特征。
The second is a Robustprincipal-component-analysis-based recurrent neural network(RPRNN),which extracts global andsparse features with micro-expression-specific representations.
第二个是基于鲁棒主成分分析的循环神经网络(RPRNN),用于提取具有微表情特定表示的全局且稀疏特征。
The extracted effective features areemployed for micro-expression recognition through the fusion of sub-networks.
通过子网络的融合,利用提取的有效特征进行微表情识别。
1.简介
In order to help people recognize micro-expression,Ek-man et al.developed the Facial Action Coding System(FACS)[11]and defined the muscleactivity of facial expressions as action units(AU).
Ekman等人开发了面部动作编码系统(FACS),将面部表情的肌肉活动定义为动作单元(AU),并开发了微表情训练工具(micro-expressionTT)
In addition,since the collection and labeling of micro-expressions aretime-consuming and laborious,the total number of published micro-expression samplesis about 1000.Therefore,micro-expression recognition is a typical small sample size(SSS)problem.
由于微表情的采集和标注耗时且繁琐,已发布的微表情样本总数约为1000,因此微表情识别是典型的小样本问题。
The architecture of the proposed method mainly includestwo sub-networks:(1)a hierarchical convolutional recurrent network(HCRNN),learninglocal and abundant features from original frames of micro-expression video clips,and(2)a robust principal component analysis recurrent network(RPRNN),extracting sparseinformation from original frames of micro-expression video clips by RPCA,and thenfeeding the sparse information to a deep learning model to extract holistic and sparsefeatures.
提出方法的架构主要包括两个子网络:(1)分层卷积循环网络(HCRNN),从微表情视频片段的原始帧中学习局部丰富的特征;(2)鲁棒主成分分析循环网络(RPRNN),通过RPCA从微表情视频片段的原始帧中提取稀疏信息,然后将稀疏信息输入到深度学习模型中提取整体和稀疏特征。
2.相关工作
2.1微表情识别
In the early stages of the study,most methods adopt handcrafted features to iden-tify micro-expressions.
这些方法包括将面部划分为特定区域,并利用3D梯度方向直方图描述符识别每个区域中的运动,使用LBP-TOP提取微表情的动态和外观特征,以及采用鲁棒主成分分析(RPCA)提取稀疏微表情信息和局部时空方向特征等。
However,the small sample size of micro-expression samplesand the subtle and brief nature of micro-expression limit the combination of deep learningwith micro-expression recognition methods.Thus,how to learn the micro-expressionfeatures effectively is necessary research for further performance improvement.
然而,微表情样本数量少且微表情的微妙短暂特性限制了深度学习与微表情识别方法的结合,因此,如何有效学习微表情特征对于进一步提高性能至关重要。
2.2深度卷积网络
It is a classic and widely usedstructure with three prominent characteristics:local receptive fields shared weights andspatial or temporal subsampling.
它是一种经典且广泛使用的结构,具有三个显著特点:局部感受野、共享权重和空间或时间下采样。
2.3循环神经网络
Recurrent neural network(RNN)can be used to process sequential data throughmapping an input sequence to a corresponding output sequence,using the hidden states.
循环神经网络(RNN)可以通过使用隐藏状态将输入序列映射到相应的输出序列,用于处理序列数据。
Since micro-expressions are very subtle,it is not easy to distinguish them from neutralfaces just by a single frame.The movement pattern in the temporal sequence is an essentialfeature for micro-expressions.Therefore,we extract the temporal features from micro-expression sequence based on BRNN and BLSTM to enhance the classification performance.
由于微表情非常微妙,单帧图像不易与中性表情区分开来。因此,基于BRNN和BLSTM,我们从微表情序列中提取时间特征,以增强分类性能。
2.4 RPCA
According to the characteristic of micro-expression with short duration and low inten-sity,micro-expression data are sparse in both the spatial and temporal domains.In 2014,Wang et.al.[24]proposed E as the deserved subtle motion information of micro-expressionand A as noise for micro-expression recognition.Inspired by this idea,we adopt RPCAto obtain sparse information from micro-expression frames,and then feed the extractedinformation to RPRNN,which learns sparse and holistic micro-expression features.
针对微表情短暂且强度低的特点,微表情数据在空间和时间域中都是稀疏的。因此,借鉴Wang等人的思想,将微表情中的细微动作信息视为所需的E,将噪声视为A,采用RPCA从微表情帧中提取稀疏信息,然后将提取的信息馈送到RPRNN,学习微表情的稀疏和整体特征。
3.提出的模型
模型的整体情况
3.1HCRNN用于提取局部特征
the HCRNN Model is constructed by theCNN Module and the BRNN Module.
HCRNN模型由CNN模块和BRNN模块构成。
3.1.1CNN模型
According to the facial physical structure,only four facial regions of interest(ROIs),i.e.,eyebrows,eyes,nose,and mouth,are used for the local micro-expression featureextraction(Figure 4a).
根据面部的物理结构,仅使用了四个面部感兴趣区域(ROI),即眉毛、眼睛、鼻子和嘴巴,用于提取局部微表情特征。
As shown in the HCRNN block of Figure 3,the structure of CNN module consists offour HCNNs.For each branch,the input is the ROI gray-scale images,and the networkcontains four convolutional layers.All four HCNNs have the same structure,as listedin Table 2.
在图3中的HCRNN模块中显示了CNN模块的结构,它由四个HCNNs组成。每个分支的输入是ROI灰度图像,网络包含四个卷积层。所有四个HCNN具有相同的结构。
3.1.2BRNN模型
In a micro-expression sequence,the past context and future context usually are usefulfor prediction.Thus,a BRNN module[46]is adopted to process temporal variation inmicro-expressions.
微表情序列中的过去和未来上下文通常对预测有用,因此采用了BRNN模块来处理微表情的时间变化。
We classify micro-expressions by an FC layer in L12 ofHCRNN and obtain probabilistic outputs by the softmax layer in L13 of HCRNN
在HCRNN的L12层通过FC层对微表情进行分类,并通过L13层的softmax层获得概率输出。
3.2RPRNN用于提取整体特征
3.2.1用RPCA提取稀疏微表情
Due to the short duration and low intensity of micro-expression movement,micro-expressions could be considered as sparse data.
由于微表情运动持续时间短,强度低,可被视为稀疏数据,因此采用RPCA来获取稀疏微表情信息。
Wright et al.adopted the 1-norm as a convex surrogate for thehighly nonconvex 0-norm and the nuclear norm(or sum of singular values)to replacenon-convex low-rank matrix,
为了解决非凸问题,采用了凸代替函数,其中1-范数代替了0-范数,核范数代替了非凸低秩矩阵。
3.2.2RPRNN的模型结构
The obtained sparse micro-expression images are fed into RPRNN to extract holisticfeatures.
稀疏的微表情图像被送入RPRNN以提取整体特征
in order to learn high-level micro-expression representations,a deep BLSTM network iscreated by multiple LSTM hidden layers.
为了学习高级微表情表示,通过多个LSTM隐藏层创建了一个深层BLSTM网络。
to avoid the overfitting problem,wecombine the cross-entropy loss function with L2 Regularization
为了避免过拟合问题,将交叉熵损失函数与L2正则化结合使用,其中θindex是权重值。
3.3模型混合
就是将两个子模型的结果融合到一起,方法如下
4.实验
做了对比实验和消融实验,没啥好说的,肯定是提出的方法最好。
5.结论与展望
DeepLocal-Holistic Network,which fused by HCRNN and RPRNN,captures the local-holistic,sparse-abundant micro-expression information,and boosts the performance of micro-expression recognition.
深度本地-整体网络通过HCRNN和RPRNN的融合,捕获了局部-整体、稀疏-丰富的微表情信息,并提高了微表情识别的性能。
In future work,wewill further investigate unsupervised learning as well as data augmentation methods toimprove the performance of micro-expression recognition.
在未来的工作中,我们将进一步研究无监督学习以及数据增强方法,以提高微表情识别的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/806565.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【网站项目】校园失物招领小程序

🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板&#xff…

chromium 协议栈 cronet ios 踩坑案例

1、请求未携带 Accept-Language http header 出现图片加载失败 现象: 访问 https://www.huawei.com/cn/?ic_mediumdirect&ic_sourcesurlent 时出现图片加载失败的问题 预期结果: 原因: 网络库删除了添加 Accept-Language header 的逻…

搭建NFS服务器,部署k8s集群,并在k8s中使用NFS作为持久化储存

🐇明明跟你说过:个人主页 🏅个人专栏:《Kubernetes航线图:从船长到K8s掌舵者》 🏅 🔖行路有良友,便是天堂🔖 目录 一、前言 1、k8s概述 2、NFS简介 二、NFS服务器…

分享 WebStorm 2024 激活的方案,支持JetBrains全家桶

大家好,欢迎来到金榜探云手! WebStorm公司简介 JetBrains 是一家专注于开发工具的软件公司,总部位于捷克。他们以提供强大的集成开发环境(IDE)而闻名,如 IntelliJ IDEA、PyCharm、和 WebStorm等。这些工具…

SOCKS代理是如何增强网络隐私?

在数字化时代🌐,网络隐私的重要性日益凸显。个人和组织都在寻找有效的方法来保护自己的网络活动不受侵犯。SOCKS代理作为一种流行的网络协议,提供了一种有效的手段来增强网络隐私。本文将详细介绍SOCKS代理是如何工作的,以及它是如…

C++模板编程

模板是泛型编程的基础,先给出泛型编程的概念。 泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。 应用场景:比如要实现一个通用的,进行两个变量互相交换的函数,此时可以通过函数重载的方式&…

【从浅学到熟知Linux】进程状态与进程优先级(含进程R/S/T/t/D/X/Z状态介绍、僵尸进程、孤儿进程、使用top及renice调整进程优先级)

🏠关于专栏:Linux的浅学到熟知专栏用于记录Linux系统编程、网络编程及数据库等内容。 🎯每天努力一点点,技术变化看得见 文章目录 进程状态进程状态查看R运行状态(running)S睡眠状态(sleeping&a…

蓝桥杯嵌入式速成

蓝桥杯嵌入式速成 cubmx创建工程利用官方提供的LCD代码创建工程(15届不能用)利用官方提供的LCD代码创建工程(15届能用)Keil配置头文件注意其他注意 LED闪烁 按键短按长按双击 LCD高亮行高亮字符 RTCADCI2Cuart接收发送 PWMDAC定时…

Vue.js------vue基础

1. 能够了解更新监测, key作用, 虚拟DOM, diff算法2. 能够掌握设置动态样式3. 能够掌握过滤器, 计算属性, 侦听器4. 能够完成品牌管理案例 一.Vue基础_更新监测和key 1.v-for更新监测 目标:目标结构变化, 触发v-for的更新 情况1: 数组翻转情况2: 数组截取情况3…

VIT论文阅读

论文地址:https://arxiv.org/pdf/2010.11929.pdf VIT论文阅读 摘要INTRODUCTION结论RELATEDWORKMETHOD1.VISIONTRANSFORMER(VIT)整体流程消融实验HEAD TYPE AND CLASSTOKENpoisitional embedding 整体过程公式Inductive biasHybrid Architecture 2.FINE-TUNINGANDH…

Substance 3D2024版 下载地址及安装教程

Substance 3D是Adobe公司推出的一套全面的3D设计和创作工具集合,用于创建高质量的3D资产、纹理和材质。 Substance 3D包括多个功能强大的软件和服务,如Substance 3D Painter、Substance 3D Designer和Substance 3D Sampler等。这些工具提供了广泛的功能…

TQ15EG开发板教程:在MPSOC上运行ADRV9009

首先需要在github上下载两个文件,本例程用到的文件以及最终文件我都会放在网盘里面, 地址放在最后面。在github搜索hdl选择第一个,如下图所示 GitHub网址:https://github.com/analogdevicesinc/hdl/releases 点击releases选择版…

vue实现海康h5player问题汇总

1. 引入问题 最开始写的时候,把h5player封装成了一个组件,把资源文件随便放在了一个目录下, 直接在子组件中引入,报错window.JSPlugin is not a constructor 或者JSPlugin is not defined 初步分析应该是引入资源文件失败&#x…

Java异常处理机制详解:多层方法调用与异常传播(day23)

1.数组下标越界 2.多个处理异常 上面这两个代码的区别就是有无 System.out.println("抛出了NumberFormatException"); System.out.println("抛出了ArrayIndexOutOfBoundsException"); 第一种是不论捕获到哪种异常,都只会调用e.printStack…

Asterisk 21.2.0编译安装经常遇到的问题和解决办法之pjproject

目录 Asterisk社区官方的说法然而买家秀是这样的pjproject-2.14下载不了的问题如何解决 Asterisk社区官方的说法 编译安装Asterisk 21.2.0版本 按照官网文档,原则上只需要如下几步: ./contrib/scripts/install_prereq install ./configure make make i…

Golang | Leetcode Golang题解之第20题有效的括号

题目&#xff1a; 题解&#xff1a; func isValid(s string) bool {n : len(s)if n % 2 1 {return false}pairs : map[byte]byte{): (,]: [,}: {,}stack : []byte{}for i : 0; i < n; i {if pairs[s[i]] > 0 {if len(stack) 0 || stack[len(stack)-1] ! pairs[s[i]] {…

【leetcode面试经典150题】36. 旋转图像(C++)

【leetcode面试经典150题】专栏系列将为准备暑期实习生以及秋招的同学们提高在面试时的经典面试算法题的思路和想法。本专栏将以一题多解和精简算法思路为主&#xff0c;题解使用C语言。&#xff08;若有使用其他语言的同学也可了解题解思路&#xff0c;本质上语法内容一致&…

第04章 计算机常用通信指标和术语视频课程

4.1 本章目标 掌握bit、Byte、KB、MB、GB、TB概念和换算关系掌握波特率、比特率、误码率的概念掌握信道、基带信号、频带信号概念了解多路复用、频分多路复用、时分多路复用了解同步传输、异步传输概念 4.2 bit、Byte、KB、MB、GB、TB概念和换算关系 4.2.1 概念与换算 4.2.2…

docker-compose 之 OpenGauss

使用 docker 启动高斯数据库的示范脚本如下&#xff1a; docker-compose.yml version: 3.7 services:opengauss:image: enmotech/opengauss:5.1.0container_name: opengaussnetwork_mode: "host"privileged: truevolumes:- ./opengauss:/var/lib/opengaussenvironm…

使用自己的数据基于SWIFT微调Qwen-Audio-Chat模型

目录 使用自己的数据训练参数设置自己的数据准备语音转写任务语音分类任务 开始训练不同训练方法mpddpmp ddpdeepspeed 训练实例训练详情Qwen-Audio-Chat模型 模型数据实例官方可用的数据由内部函数处理为指定格式 训练好的模型测试 使用自己的数据 官方参考文档&#xff1a;…