图像处理之频域滤波DFT

  摘要:傅里叶变换可以将任何满足相应数学条件的信号转换为不同系数的简单正弦和余弦函数的和。图像信号也是一种信号,只不过是二维离散信号,通过傅里叶变换对图像进行变换可以图像存空域转换为频域进行更多的处理。本文主要简要描述傅里叶变换以及其在图像处理中的简单应用,并进行一些简单的实验来描述其相关性质。
  关键字:傅里叶变换,二维傅里叶变换,二维离散傅里叶变换

  傅里叶变换是对傅里叶级数进行研究得到的结论,傅里叶发现满足一定数学条件的复杂周期函数可以用一系列简单的正弦和余弦函数之和表示。分解后的表示形式的每个分量都是一个频率的分量,也就将复杂信号转换成简单信号,而简单信号更容易进行数学描述和分析。

1 复数域

  由于傅里叶变换中涉及到了复数,首先简单了解下复数。
  复数的定义如下:
C = R + j I C=R+jI C=R+jI
  其中 R R R I I I都为实数分别为复数的实部和虚部,而 j j j是-1的平方根,即 j 2 = − 1 j^2=-1 j2=1。实数集就是我们一般谈的数集,其实复数的子集(当 I = 0 I=0 I=0时)。如果需要在平面坐标中表述复数,其实和普通的笛卡尔坐标系表示相同,只是横坐标换成实数,纵坐标换成虚数即可(即复数是复平面坐标中的点 ( R , I ) (R,I) (R,I))。
  复数的共轭:
C ∗ = R − j I C^{*}=R-jI C=RjI
  复数在极坐标下的表示为:
C = ∣ C ∣ ( c o s θ + j s i n θ ) ∣ C ∣ = R 2 + I 2 θ = a r c t a n ( I R ) \begin{equation} \begin{aligned} C&=|C|(cos\theta+jsin\theta)\\ |C|&=\sqrt{R^2+I^2}\\ \theta&=arctan(\frac{I}{R}) \end{aligned} \end{equation} CCθ=C(cosθ+jsinθ)=R2+I2 =arctan(RI)
  另外如果用欧拉公式转( e j θ = c o s θ + j s i n θ e^{j\theta=cos\theta+jsin\theta} ejθ=cosθ+jsinθ)换则可以转换为:
C = ∣ C ∣ e j θ C=|C|e^{j\theta} C=Cejθ

2 傅里叶变换

2.1 傅里叶级数

  傅里叶级数:即具有周期 T T T的连续变换 t t t的周期函数 f ( t ) f(t) f(t)可以被描述为乘以适合的系数的正弦和余弦的和,这个和就是傅里叶级数。
f ( t ) = ∑ n = − ∞ ∞ c n e j 2 π n T t c n = 1 T ∫ − T 2 T 2 f ( t ) e − j 2 π n T t d t , n = 0 , ± 1 , ± 2 , . . . \begin{equation} \begin{aligned} f(t)&=\sum_{n=-\infty}^{\infty}{c_{n}e^{j\frac{2\pi n}{T}t}}\\ cn&=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}{f(t)e^{-j\frac{2\pi n}{T}t}}dt,n=0,\pm1,\pm2,... \end{aligned} \end{equation} f(t)cn=n=cnejT2πnt=T12T2Tf(t)ejT2πntdt,n=0,±1,±2,...
  使用欧拉公式转换即可得到正弦和余弦和的标识:
f ( t ) = ∑ n = − ∞ ∞ c n [ c o s ( 2 π n T t ) + j s i n ( 2 π n T t ) ] f(t)=\sum_{n=-\infty}^{\infty}{c_{n}[cos(\frac{2\pi n}{T}t)+jsin(\frac{2\pi n}{T}t)]} f(t)=n=cn[cos(T2πnt)+jsin(T2πnt)]
  假设原始波形的为 f ( t ) = f ( t + T ) f(t)=f(t+T) f(t)=f(t+T),则对于傅里叶级数而言,其n次谐波(当 n = 1 n=1 n=1时的分量为一次谐波, n = 2 n=2 n=2时的分量为二次谐波)的幅度为 c n c_n cn,周期为 T n \frac{T}{n} nT,频率为 n T \frac{n}{T} Tn
在这里插入图片描述

2.2 连续傅里叶变换

  一维连续傅里叶变换
  满足狄利克雷条件的函数 f ( t ) f(t) f(t)的傅里叶变换为:

  狄利克雷条件:

  • 在一周期内,连续或只有有限个第一类间断点;
  • 在一周期内,极大值和极小值的数目应是有限个;
  • 在一周期内,信号是绝对可积的。

F ( μ ) = ∫ − ∞ + ∞ f ( t ) e − j 2 π μ t d t F ( μ ) = ∫ − ∞ + ∞ f ( t ) [ c o s ( 2 π μ t ) − j s i n ( 2 π μ t ) ] d t μ = n T \begin{equation} \begin{aligned} F(\mu)&=\int_{-\infty}^{+\infty}{f(t)e^{-j2\pi \mu t}dt}\\ F(\mu)&=\int_{-\infty}^{+\infty}{f(t)[cos(2\pi \mu t) - jsin(2\pi \mu t)]dt}\\ \mu&=\frac{n}{T} \end{aligned} \end{equation} F(μ)F(μ)μ=+f(t)ej2πμtdt=+f(t)[cos(2πμt)jsin(2πμt)]dt=Tn
   F ( t ) F(t) F(t)傅里叶变换对应的傅里叶逆变换 F − 1 ( t ) F^{-1}(t) F1(t)为:
f ( t ) = ∫ − ∞ + ∞ F ( μ ) e j 2 π μ t d μ f ( t ) = ∫ − ∞ + ∞ F ( μ ) [ c o s ( 2 π μ t ) + j s i n ( 2 π μ t ) ] d μ μ = n T \begin{equation} \begin{aligned} f(t)&=\int_{-\infty}^{+\infty}{F(\mu)e^{j2\pi \mu t}d\mu}\\ f(t)&=\int_{-\infty}^{+\infty}{F(\mu)[cos(2\pi \mu t) + jsin(2\pi \mu t)]d\mu}\\ \mu&=\frac{n}{T} \end{aligned} \end{equation} f(t)f(t)μ=+F(μ)ej2πμtdμ=+F(μ)[cos(2πμt)+jsin(2πμt)]dμ=Tn

  傅里叶变换 F ( t ) F(t) F(t)可以将连续函数 f ( t ) f(t) f(t)从时域转换到频域空间,而逆变换 F − 1 ( t ) F^{-1}(t) F1(t)可以将其傅里叶变换 F ( t ) F(t) F(t)还原到时域得到 f ( t ) f(t) f(t)。傅里叶变换和傅里叶逆变换构成傅里叶变换对。通常的信号处理,如果在时域不好处理时,我们可以利用傅里叶变换先将信号转换到频域,在频域空间进行处理之后再用逆变换将信号转换到时域空间。

  二维连续傅里叶变换
  二维傅里叶变换和一维傅里叶变换类似,只是将一维扩展到二维:
F ( μ , v ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( t , z ) e − j 2 π ( μ t + v z ) d t d z f ( t , z ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ F ( μ , v ) e j 2 π ( μ t + v z ) d μ d v μ = n T μ , v = n T v \begin{equation} \begin{aligned} F(\mu,v)&=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}{f(t,z)e^{-j2\pi(\mu t + vz)}dt dz}\\ f(t,z)&=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}{F(\mu,v)e^{j2\pi(\mu t + vz)}d\mu dv}\\ \mu&=\frac{n}{T_{\mu}},v=\frac{n}{T_{v}} \end{aligned} \end{equation} F(μ,v)f(t,z)μ=++f(t,z)ej2π(μt+vz)dtdz=++F(μ,v)ej2π(μt+vz)dμdv=Tμn,v=Tvn

  傅里叶变换后是在复数空间,即 F ( u ) = R ( μ ) + j I ( μ ) = ∣ F ( μ ) ∣ e j ϕ ( u ) F(u)=R(\mu)+jI(\mu)=|F(\mu)|e^{j\phi(u)} F(u)=R(μ)+jI(μ)=F(μ)ejϕ(u)
  傅里叶谱 ∣ F ( μ ) ∣ = ∣ R ( μ ) 2 + I ( μ ) 2 ∣ 1 2 |F(\mu)|=|R(\mu)^2+I(\mu)^2|^{\frac{1}{2}} F(μ)=R(μ)2+I(μ)221
  相角 ϕ ( μ ) = a r c t h a n ( I ( μ ) R ( μ ) ) \phi(\mu)=arcthan(\frac{I(\mu)}{R(\mu)}) ϕ(μ)=arcthan(R(μ)I(μ))
  能量谱 P ( u ) = ∣ F ( μ ) ∣ 2 = R ( μ ) 2 + I ( μ ) 2 P(u)=|F(\mu)|^2=R(\mu)^2+I(\mu)^2 P(u)=F(μ)2=R(μ)2+I(μ)2

2.3 离散傅里叶变换

  实际使用时由于硬件设备的原因,我们只能对离散数据进行处理,而离散数据是通过采样得到的。

2.3.1 卷积

  在了解如何对连续信号进行取样的傅里叶变换之前先了解下卷积能够方面我们进行后续的处理。
  卷积本质就是将两个信号相乘做积分,但是如果只是简单相乘则得到的输出值当 f ( t ) f(t) f(t)为冲激函数时,输出值和相乘的函数 h ( t ) h(t) h(t)相反。因此需要将 h ( t ) h(t) h(t)关于原点做反转。于是卷积的定义为:
f ( t ) ∗ h ( t ) = ∫ − ∞ + ∞ f ( τ ) h ( t − τ ) d τ f(t)\ast h(t)=\int_{-\infty}^{+\infty}f(\tau)h(t-\tau)d\tau f(t)h(t)=+f(τ)h(tτ)dτ
  而卷积对应的傅里叶变换为( F ( μ ) F(\mu) F(μ) H ( μ ) H(\mu) H(μ)分别为两个函数的傅里叶变换):
F ( f ( t ) ∗ h ( t ) ) = ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) h ( t − τ ) d τ ] e e − j 2 π τ d t = H ( μ ) F ( μ ) F(f(t)\ast h(t))=\int_{-\infty}^{+\infty}[\int_{-\infty}^{+\infty}f(\tau)h(t-\tau)d\tau]e^{e^{-j2\pi \tau}}dt=H(\mu)F(\mu) F(f(t)h(t))=+[+f(τ)h(tτ)dτ]eej2πτdt=H(μ)F(μ)

2.3.2 取样

  假设对于连续函数 f ( t ) f(t) f(t),对独立变量 t t t Δ T \Delta T ΔT的间隔进行取样,并记采样得到的离散信号为 f ^ ( t ) \hat{f}(t) f^(t),则
在这里插入图片描述

f ^ ( t ) = f ( t ) s Δ T ( t ) = ∑ n = − ∞ + ∞ f ( t ) δ ( t − n Δ T ) \hat{f}(t)=f(t)s_{\Delta T}(t)=\sum_{n=-\infty}^{+\infty}f(t)\delta(t - n\Delta T) f^(t)=f(t)sΔT(t)=n=+f(t)δ(tnΔT)
  其中 s Δ T ( t ) s_{\Delta T}(t) sΔT(t)为冲激串:
在这里插入图片描述

  而取样冲激串的傅里叶变换为:
S ( μ ) = S ( δ ( t − n Δ T ) ) = 1 Δ T ∑ n = − ∞ + ∞ δ ( μ − n Δ T ) \begin{equation} \begin{aligned} S(\mu)&=S(\delta(t - n\Delta T))=\frac{1}{\Delta T}\sum_{n=-\infty}^{+\infty}\delta(\mu - \frac{n}{\Delta T}) \end{aligned} \end{equation} S(μ)=S(δ(tnΔT))=ΔT1n=+δ(μΔTn)
  则采样后的离散序列的傅里叶变换为:
F ( f ^ ( t ) ) = F [ f ( t ) s Δ T ( t ) ] = F ( μ ) ∗ S ( μ ) = 1 Δ T ∑ n = − ∞ + ∞ F ( μ − n Δ T ) F(\hat{f}(t))=F[f(t)s_{\Delta T}(t)]=F(\mu)\ast S(\mu)=\frac{1}{\Delta T}\sum_{n=-\infty}^{+\infty}F(\mu - \frac{n}{\Delta T}) F(f^(t))=F[f(t)sΔT(t)]=F(μ)S(μ)=ΔT1n=+F(μΔTn)
  从上面的式子中我们能够看到采样后的离散信号的傅里叶变换就是原始信号的傅里叶变换的无穷拷贝,而每个拷贝之间的间隔为采样频率,即 1 Δ T \frac{1}{\Delta T} ΔT1。如果采样频率过低,则采样信号的相邻两个傅里叶变换就会重叠,发生混叠无法区分,采样得到的信号就会失真。因此采样频率的下限为 1 2 Δ T \frac{1}{2\Delta T} T1,即奈奎斯特采样频率,如果低于这个频率采样就会失真,高于这个频率采样基本能还原出原始信号。
在这里插入图片描述

  下图的虚线就是使用低采样频率采样失真的效果:
在这里插入图片描述

2.3.3 离散傅里叶变换

  一维离散傅里叶变换
  经过采样的离散函数 f ^ ( t ) 的 \hat{f}(t)的 f^(t)离散傅里叶变换的表示为:
F ^ ( μ ) = ∫ − ∞ + ∞ f ^ ( t ) e − j 2 π μ t d t = ∫ − ∞ + ∞ ∑ n = − ∞ + ∞ f ( t ) δ ( t − n Δ T ) e − j 2 π μ t d t = ∑ n = − ∞ + ∞ ∫ − ∞ + ∞ f ( t ) δ ( t − n Δ T ) e − j 2 π μ t d t = ∑ n = − ∞ + ∞ f n e − j 2 π μ Δ T \begin{equation} \begin{aligned} \hat{F}(\mu)&=\int_{-\infty}^{+\infty}{\hat{f}(t)e^{-j2\pi \mu t}dt}\\ &=\int_{-\infty}^{+\infty}{ \sum_{n=-\infty}^{+\infty}f(t)\delta(t - n\Delta T) e^{-j2\pi \mu t} }dt\\ &=\sum_{n=-\infty}^{+\infty} \int_{-\infty}^{+\infty}{f(t)\delta(t - n\Delta T) e^{-j2\pi \mu t} }dt\\ &=\sum_{n=-\infty}^{+\infty} f_{n}e^{-j2\pi \mu \Delta T} \end{aligned} \end{equation} F^(μ)=+f^(t)ej2πμtdt=+n=+f(t)δ(tnΔT)ej2πμtdt=n=++f(t)δ(tnΔT)ej2πμtdt=n=+fnej2πμΔT
  由于 F ^ ( t ) \hat{F}(t) F^(t)是周期为 1 Δ T \frac{1}{\Delta T} ΔT1的无线周期连续函数,因此我们只需要关心一个周期内的FT状态即可。假设我们在一个周期内得到 F ^ ( t ) \hat{F}(t) F^(t) M M M个等距采样的样本,那么 μ = m M Δ T , m = 0 , 1 , . . . , M − 1 \mu=\frac{m}{M\Delta T},m=0,1,...,M-1 μ=MΔTm,m=0,1,...,M1,即
F ^ ( m ) = ∑ m = 0 M − 1 f n e − j 2 π m n / M , m = 0 , 1 , 2 , . . . , M − 1 \hat{F}(m)=\sum_{m=0}^{M-1}f_ne^{-j2\pi mn/M},m=0,1,2,...,M-1 F^(m)=m=0M1fnej2πmn/M,m=0,1,2,...,M1
  相对的,当我们知道傅里叶变换为 F ^ ( t ) \hat{F}(t) F^(t)时,即可通过逆变换得到对应的离散信号:
f ^ ( n ) = 1 M ∑ m = 0 M − 1 F m e j 2 π m n / M , m = 0 , 1 , 2 , . . . , M − 1 \hat{f}(n)=\frac{1}{M}\sum_{m=0}^{M-1}F_me^{j2\pi mn/M},m=0,1,2,...,M-1 f^(n)=M1m=0M1Fmej2πmn/M,m=0,1,2,...,M1
  二维离散傅里叶变换
    首先我们将上面提到的一维离散傅里叶变换扩展到二维空间:
F ^ ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( u x M + v y N ) f ^ ( x , y ) = 1 M N ∑ x = 0 M − 1 ∑ y = 0 N − 1 F ( u , v ) e j 2 π ( u x M + v y N ) \begin{equation} \begin{aligned} \hat{F}(u,v)&=\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-j2\pi(\frac{ux}{M} + \frac{vy}{N})}\\ \hat{f}(x,y)&=\frac{1}{MN}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}F(u,v)e^{j2\pi(\frac{ux}{M} + \frac{vy}{N})} \end{aligned} \end{equation} F^(u,v)f^(x,y)=x=0M1y=0N1f(x,y)ej2π(Mux+Nvy)=MN1x=0M1y=0N1F(u,v)ej2π(Mux+Nvy)
  二维离散信号是由二维连续函数采样得到,即数字图像是从真实世界采集光信号转换成电信号,由于硬件器件的原因肯定存在精度问题。数字图像是有限时间信号,而有限时间信号包含无限频率,所以无法从采样函数的傅里叶变换中分离出一个完整的原函数的傅里叶变换。因此数字图像总是存在混淆的问题,只是不同精度问题严重程度不同。当采样率足够高时该问题人眼几乎不可察觉。

  混叠是指取样讯号被还原成连续讯号时产生彼此交叠而失真的现象。

3 傅里叶变换的实现

3.1 DFT

  傅里叶变换的实现比较简单,暴力时间复杂度为 O ( n 4 ) \Omicron(n^4) O(n4)。代码中的Matrix是自己实现的矩阵类基本操作就是一般矩阵的操作。#pragma omp parallel for是打开了OMP加速。

template<int, class T>
static Matrix<double> dft(const Matrix<T> &m){GASSERT(m.channels() == 1, "the matrix channle must be 1");std::size_t hei = m.rows(), wid = m.cols();Matrix<double> dftm(m.cols(), m.rows(), 2);
#pragma omp parallel forfor(std::size_t u = 0; u < hei; u ++){for(std::size_t v = 0; v < wid; v ++){double rv = 0.0, vv = 0.0;for(std::size_t y = 0; y < hei; y ++){for(std::size_t x = 0; x < wid; x ++){double xv = 2.0 * M_PI * (u * y * 1.0/ wid + v * x * 1.0/ hei);rv += cos(xv) * m(x, y, 0);vv += -sin(xv) * m(x, y, 0);}}dftm(v, u, 0) = rv;dftm(v, u, 1) = vv;}}return dftm;
}

  经过DFT的图像的频域的值不在[0,255]先要autoscale得到下图:
在这里插入图片描述

  依然不方便观察需要将四个顶点的值向中心移动:
在这里插入图片描述

3.2 IDFT

  逆变换同理:

template<class T>
static Matrix<T> idft(const Matrix<double> &m){GASSERT(m.channels() == 2, "the matrix channle must be 2");std::size_t hei = m.rows(), wid = m.cols();Matrix<double> dftm(m.cols(), m.rows(), 1);double mn = 1.0 / (hei * wid);for(std::size_t y = 0; y < hei; y ++){for(std::size_t x = 0; x < wid; x ++) {double rval = 0.0, ival = 0.0;for(std::size_t v = 0; v < hei; v ++){for(std::size_t u = 0; u < wid; u ++) {double vv = 2 * M_PI * (u * x * 1.0/ wid + v * y * 1.0 / hei);double r = m(u, v, 0);double i = m(u, v, 1);rval += r * cos(vv) - i * sin(vv);ival += i * cos(vv) + r * sin(vv);}}double vv = sqrt(rval * rval + ival * ival) * mn;dftm(x, y, 0) = vv;}}return dftm.as<T>();
}

  IDFT得到的图像:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/80567.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习笔记之最优化理论与方法(十)无约束优化问题——共轭梯度法背景介绍

机器学习笔记之最优化理论与方法——共轭梯度法背景介绍 引言背景&#xff1a;共轭梯度法线性共轭梯度法共轭方向共轭VS正交共轭方向法共轭方向法的几何解释 引言 本节将介绍共轭梯度法&#xff0c;并重点介绍共轭方向法的逻辑与几何意义。 背景&#xff1a;共轭梯度法 关于…

手摸手系列之前端Vue实现PDF预览及打印的终极解决方案

前言 近期我正在开发一个前后端分离项目&#xff0c;使用了Spring Boot 和 Vue2&#xff0c;借助了国内优秀的框架 jeecg&#xff0c;前端UI库则选择了 ant-design-vue。在项目中&#xff0c;需要实现文件上传功能&#xff0c;同时还要能够在线预览和下载图片和PDF文件&#x…

虹科分享 | 软件供应链攻击如何工作?如何评估软件供应链安全?

说到应用程序和软件&#xff0c;关键词是“更多”。在数字经济需求的推动下&#xff0c;从简化业务运营到创造创新的新收入机会&#xff0c;企业越来越依赖应用程序。云本地应用程序开发更是火上浇油。然而&#xff0c;情况是双向的&#xff1a;这些应用程序通常更复杂&#xf…

路由缓存问题 | vue-router的导航守卫

路由缓存问题 带参路由&#xff0c;当参数发生变化时&#xff0c;相同的组件实例将被复用&#xff0c;组件的生命周期钩子不会被调用&#xff0c;导致数据无法更新。 两种解决方法&#xff1a; 1. 给 RouterView绑定key值&#xff0c;即 <RouterView :key"$route.ful…

手机木马远程控制复现

目录 目录 前言 系列文章列表 渗透测试基础之永恒之蓝漏洞复现http://t.csdn.cn/EsMu2 思维导图 1&#xff0c;实验涉及复现环境 2,Android模拟器环境配置 2.1,首先从官网上下载雷电模拟器 2.2,安装雷电模拟器 2.3, 对模拟器网络进行配置 2.3.1,为什么要进行配置…

flask要点与坑

简介 Flask是一个用Python编写的Web应用程序框架&#xff0c;该框架简单易用、模块化、灵活性高。 该笔记主要记录Flask的关键要点和容易踩坑的地方 Flask 日志配置 Flask 中的自带logger模块&#xff08;也是python自带的模块&#xff09;&#xff0c;通过简单配置可以实现…

SpringMVC之JSON数据返回与异常处理机制

目录 一.SpringMVC的JSON数据返回 1.导入Maven依赖 2.配置spring-mvc.xml 3.ResponseBody注解的使用 3.1案例演示 1.List集合转JSON 2.Map集合转JSON 3.返回指定格式String 4. ResponseBody用法 5.Jackson 5.1介绍 5.2常用注解 二.异常处理机制 1.为什么要全局异常处…

Jenkins :添加node权限获取凭据、执行命令

拥有Jenkins agent权限的账号可以对node节点进行操作&#xff0c;通过添加不同的node可以让流水线项目在不同的节点上运行&#xff0c;安装Jenkins的主机默认作为master节点。 1.Jenkins 添加node获取明文凭据 通过添加node节点&#xff0c;本地监听ssh认证&#xff0c;选则凭…

详解TCP/IP协议第三篇:通信数据在OSI通信模型的上下传输

文章目录 一&#xff1a;OSI通信模型间数据传输展示 二&#xff1a;应用层到会话层解析 1&#xff1a;应用层 2&#xff1a;表现层 3&#xff1a;会话层 三&#xff1a;传输层到物理层解析 1&#xff1a;传输层 2&#xff1a;网络层 3&#xff1a;数据链路层、与物理层…

考研算法47天:01背包

问题描述 算法详细步骤 代码随想录 (programmercarl.com) ac代码 #include <iostream> using namespace std; int bag[1001]; int bagMax[1001]; int bagvalue[1001]; int main(){int n,v;cin>>n>>v;for(int i0;i<n;i){cin>>bag[i]>>bagva…

【C++杂货铺】继承由浅入深详细总结

文章目录 一、继承的概念及定义1.1 继承的概念1.2 继承定义1.2.1 定义格式1.2.2 继承方式和访问限定符1.2.3 继承基类成员访问方式的变化 二、基类和派生类对象赋值转换三、继承中的作用域四、派生类中的默认成员函数4.1 默认构造函数4.2 拷贝构造函数4.3 赋值运算符重载函数4.…

【C++】动态规划题目总结(随做随更)

文章目录 一. 斐波那契数列模型1. 第 N 个泰波那契数2. 三步问题3. 使用最小花费爬楼梯解法一&#xff1a;从左往右填表解法二&#xff1a;从右往左填表 一. 斐波那契数列模型 解题步骤&#xff1a; 确定状态表示&#xff08;最重要&#xff09;&#xff1a;明确dp表里的值所…

PYTHON-模拟练习题目集合

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…

Python的get请求报错Error: Unexpected status code 400

一句话导读&#xff1a; 最近在做研发效能提升的事情&#xff0c;其中有一块就是要对项目管理相关数据做统计&#xff0c;我们使用的是ones做的项目管理&#xff0c;ones本身带的那些报表满足不了我们的需求&#xff0c;就想着看这些数据是不是能自己拿出来做统计&#xff0c;有…

浅谈C++|多态篇

1.多态的基本概念 多态是C面向对象三大特性之一多态分为两类 1. 静态多态:函数重载和运算符重载属于静态多态&#xff0c;复用函数名 2.动态多态:派生类和虚函数实现运行时多态 静态多态和动态多态区别: 静态多态的函数地址早绑定–编译阶段确定函数地址 动态多态的函数地址晚绑…

Linux学习之平均负载的概念和查看方法

先理解一下平均负载的含义&#xff1a; 平均负载是指单位时间内&#xff0c;系统处于可运行状态和不可中断状态的进程数&#xff0c;也可以看成平均活跃进程数。 可运行状态的进程&#xff1a; 正在使用CPU或者正在等待CPU处理的进程&#xff0c;ps 命令看到的&#xff0c;处于…

黑马JVM总结(十)

&#xff08;1&#xff09;直接内存_基本使用 下面我们看一下使用了ByteBuffer直接内存&#xff0c;大文件的读写效率是非常的高 Java本身并不具备磁盘读写的能力&#xff0c;它需要调用操作系统的函数&#xff0c;需要从java的方法内部调用本地方法操作系统的方法&#xff0c…

bboss 流批一体化框架 与 数据采集 ETL

数据采集 ETL 与 流批一体化框架 特性&#xff1a; 高效、稳定、快速、安全 bboss 是一个基于开源协议 Apache License 发布的开源项目&#xff0c;主要由以下三部分构成&#xff1a; Elasticsearch Highlevel Java Restclient &#xff0c; 一个高性能高兼容性的Elasticsea…

【C刷题】day2

一、选择题 1、以下程序段的输出结果是&#xff08; &#xff09; #include<stdio.h> int main() { char s[] "\\123456\123456\t"; printf("%d\n", strlen(s)); return 0; } A: 12 B: 13 C: 16 D: 以上都不对【答案】&#xff1a; A 【解析】…

Python Opencv实践 - 视频文件写入(格式和分辨率修改)

参考资料&#xff1a; python opencv写视频——cv2.VideoWriter()_cv2.cv.videowriter(_翟羽嚄的博客-CSDN博客 import cv2 as cv import numpy as np#1. 打开原始视频 video_in cv.VideoCapture("../SampleVideos/Unity2D.mp4") video_width int(video_in.get(c…