1.多态的基本概念
多态是C++面向对象三大特性之一多态分为两类
1. 静态多态:函数重载和运算符重载属于静态多态,复用函数名·2.动态多态:派生类和虚函数实现运行时多态
静态多态和动态多态区别:
·静态多态的函数地址早绑定–编译阶段确定函数地址·动态多态的函数地址晚绑定–运行阶段确定函数地址下面通过案例进行讲解多态
动态多态满足条件
1、有继承关系
2、子类重写父类的虚函数动态多态使用
父类的指针或者引用执行子类对象重写:函数返回值类型函数名参数列表完全—致称为重写
静态多态代码:
#include <iostream>
using namespace std;
class dongwu {
public:void speak() {cout << "动物叫" << endl;}
};class cat :public dongwu {void speak() {cout << "猫叫" << endl;}
};
//早绑定,编译阶段就确定函数的地址void speak(dongwu& p) {p.speak();
}
void fun() {cat p;speak(p);
}
int main() {fun();cat p;//发生隐式转换,只能把儿子转为父亲,退化dongwu m = p;m.speak();return 0;
}
注意转化,以及早绑定的特性是执行当前的类型的函数,不执行儿子的函数
动态动态代码:
#include <iostream>
using namespace std;
class dongwu {
public://virtual虚函数关键字virtual void speak() {cout << "动物叫" << endl;}
};class cat :public dongwu {//子类的virtual可加可不加virtual void speak() {cout << "猫叫" << endl;}
};//晚绑定,执行子类的函数
void speak(dongwu& p) {p.speak();
}
void fun() {cat p;speak(p);
}
int main() {fun();return 0;
}
二.多态的底层原理
我们先看以下代码:
#include <iostream>
using namespace std;
class father1 {
public:void speak() {cout << "动物叫" << endl;}
};
class father2 {
public:virtual void speak() {cout << "动物叫" << endl;}
};
int main() {cout << sizeof(father1) << endl;cout << sizeof(father2) << endl;return 0;
}
当类的成员函数加入虚函数关键字后,会发现类的大小发生了改变。此时类的内部结构。此时类的内部会多一个指针虚函数(表)指针,虚函数指针指向虚函数表,虚函数表中存储虚函数的入口地址。
那么当派生类继承基类后,如果成员函数没有重名,那么会完全继承父类的结构。
但是当派生类,重写基函数的虚函数时,派生类中的虚函数表会发生改变,此时虚函数表指向派生类的虚函数,基类的虚函数被覆盖。
此时,我们有派生类隐式转换为基类时,虚函数表中的内容并不改变,此时调用虚函数,执行的是派生类的虚函数。
三.多态的优点
1、组织结构清晰
2、可读性强
3、对于前期和后期扩展以及维护性高
普通计算机类:
#include <iostream>
using namespace std;
class jisuanqi {
public:int a, b;int jisuan(string fu) {if (fu == "+") {return a + b;}else if (fu == "-") {return a - b;}else if (fu == "*") {return a * b;}}
};
void fun() {jisuanqi q;q.a = 200;q.b = 100;cout << q.a << " - " << q.b << " = " << q.jisuan("-") << endl;cout << q.a << " + " << q.b << " = " << q.jisuan("+") << endl;cout << q.a << " * " << q.b << " = " << q.jisuan("*") << endl;}
int main() {fun();return 0;
}
多态计算机类:
#include <iostream>
using namespace std;
class jisuanqi {
public:int a;int b;virtual int jisuan() {return 0;}
};class add :public jisuanqi {virtual int jisuan() {return a+b;}
};class jian :public jisuanqi {virtual int jisuan() {return a - b;}
};class cheng:public jisuanqi {virtual int jisuan() {return a * b;}
};void fun() {jisuanqi* p = new add;p->a = 200;p->b = 100;cout << p->a << " + " << p->b << " = " << p->jisuan()<<endl;delete p;p = new jian;p->a = 200;p->b = 100;cout << p->a << " - " << p->b << " = " << p->jisuan()<<endl;delete p;p = new cheng;p->a = 200;p->b = 100;cout << p->a << " * " << p->b << " = " << p->jisuan()<<endl;delete p;
}
int main() {fun();return 0;
}
四.纯虚函数和抽象类
在多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容因此可以将虚函数改为纯虚函数。当类中有了纯虚函数,这个类也称为抽象类
纯虚函数语法: virtual 返回值类型 函数名︰(参数列表)= 0 ;
抽象类特点:
·无法实例化对象
·子类必须重写抽象类中的纯虚函数,否则也属于抽象类
代码:
#include <iostream>
using namespace std;class father {
public://纯虚函数virtual void fun() = 0;
};class son :public father{
public:void fun() {cout << "我是sond" << endl;}
};void fun() {//多态f必须是指针或者引用//father f; 报错不可实例化father* f = new son;f->fun();
}
int main() {fun();return 0;
}
案例制作饮品:
#include <iostream>
using namespace std;
class father {
public:virtual void zhushui() = 0;virtual void chongpao() = 0;virtual void daoru() = 0;virtual void jialiao() = 0;void fun() {zhushui();chongpao();daoru();jialiao();}
};class tea :public father{void zhushui() {cout << "煮山泉水" << endl;};void chongpao() {cout << "冲茶" << endl;};void daoru() {cout << "倒入茶杯中" << endl;};void jialiao() {cout << "加入枸杞" << endl;};
};class kafei : public father{void zhushui() {cout << "煮水" << endl;};void chongpao() {cout << "冲咖啡" << endl;};void daoru() {cout << "倒入咖啡杯中" << endl;};void jialiao() {cout << "加入奶和糖" << endl;};
};
//函数接口
void fun(father* p) {p->fun();delete p;
}
int main() {fun(new tea);cout << "----------" << endl;fun(new kafei);return 0;
}
五. 虚析构和纯虚析构
多态使用时,如果子类中有属性开辟到堆区,那么父类指针在释放时无法调用到子类的析构代码
解决方式:将父类中的析构函数改为虚析构或者纯虚析构
虚析构和纯虚析构共性:
·可以解决父类指针释放子类对象·都需要有具体的函数实现
虚析构和纯虚析构区别:
·如果是纯虚析构,该类属于抽象类,无法实例化对象
代码:
#include <iostream>
using namespace std;
class father {
public://纯虚函数virtual void fun() =0;father() {cout << "father构造函数" << endl;}~father() {cout << "father析构函数" << endl;}
};class son :public father {
public://堆区开辟数据son(int age) {cout << "son构造函数" << endl;this->age = new int(age);}~son() {cout << "son析构函数" << endl;if (this->age != NULL) {delete age;age = NULL;}}void fun() {cout << *age<< "son的fun函数调用" << endl;}int* age;
};
void fun() {father* p = new son(21);delete p;
}
int main() {fun();return 0;
}
如图,当发生多态时,基类并不会调用子类的析构函数,当子类中含有堆区开辟的空间时。会造成内存泄漏。此时需要虚析构或纯虚析构来解决。
虚析构代码:
#include <iostream>
using namespace std;
class father {
public://纯虚函数virtual void fun() =0;father() {cout << "father构造函数" << endl;}virtual ~father() {cout << "father析构函数" << endl;}
};class son :public father {
public://堆区开辟数据son(int age) {cout << "son构造函数" << endl;this->age = new int(age);}~son() {cout << "son析构函数" << endl;if (this->age != NULL) {delete age;age = NULL;}}void fun() {cout << *age<< "son的fun函数调用" << endl;}int* age;
};
void fun() {father* p = new son(21);delete p;
}
int main() {fun();return 0;
}
纯虚析构:
#include <iostream>
using namespace std;
class father {
public://纯虚函数virtual void fun() =0;father() {cout << "father构造函数" << endl;}virtual ~father() = 0;
};
//纯虚函数必须
father::~father()
{cout << "father析构函数" << endl;
}class son :public father {
public://堆区开辟数据son(int age) {cout << "son构造函数" << endl;this->age = new int(age);}~son() {cout << "son析构函数" << endl;if (this->age != NULL) {delete age;age = NULL;}}void fun() {cout << *age<< "son的fun函数调用" << endl;}int* age;
};
void fun() {father* p = new son(21);delete p;
}
int main() {fun();return 0;
}
案例计算机
#include <iostream>
using namespace std;class CPU {
public://纯虚函数virtual void func() = 0;
};class Memory_Module {
public://纯虚函数virtual void func() = 0;
};class Graphics_card {
public://纯虚函数virtual void func() = 0;
};class CPU_intel : public CPU {
public:void func() {cout << "intel的CPU工作" << endl;}
};class Graphics_card_intel : public Graphics_card {
public:void func() {cout << "intel的显卡工作" << endl;}
};class Memory_Module_intel : public Memory_Module {
public:void func() {cout << "intel的内存条工作" << endl;}
};class CPU_lenovo: public CPU {
public:void func() {cout << "联想的CPU工作" << endl;}
};class Graphics_card_lenovo : public Graphics_card {
public:void func() {cout << "联想的显卡工作" << endl;}
};
class Memory_Module_lenovo : public Memory_Module {
public:void func() {cout << "联想的内存条工作" << endl;}
};
class computer {
public://当传入的是子类时发生多态computer() {};computer(CPU* CPU , Memory_Module* m, Graphics_card* g) {this->cpu = CPU;this->m = m;this->g = g;}void work() {cpu->func();m->func();g->func();}
private:CPU* cpu;Memory_Module* m;Graphics_card* g;
};void fun() {CPU_lenovo* c1 = new CPU_lenovo;CPU_intel* c2 = new CPU_intel;Graphics_card_intel* g1 = new Graphics_card_intel;Graphics_card_lenovo* g2 = new Graphics_card_lenovo;Memory_Module_intel* m1 = new Memory_Module_intel;Memory_Module_lenovo* m2 = new Memory_Module_lenovo;cout << "第一台电脑" << endl;computer* com = new computer(c1,m1,g1);com->work();cout << "********************************" << endl;cout << "第二台电脑" << endl;computer* com1 = new computer(c2, m2, g2);com1->work();
}
int main() {fun();return 0;
}