hive 数据库表常用操作及相关函数讲解

创建数据库并指定hdfs存储位置

create database myhive2 location ‘/myhive2’;
使用location关键字,可以指定数据库在HDFS的存储路径。
Hive的库在HDFS上就是一个以.db结尾的目录
默认存储在:
/user/hive/warehouse内
当你为Hive表指定一个LOCATION时,你告诉Hive这个表的数据应该存放在HDFS的哪个位置。这个位置是HDFS命名空间中的一个目录,它可能跨越多个数据节点。Hive和HDFS会协同工作,确保当查询这个表时,数据可以从正确的节点上被检索和处理。
可以通过LOCATION关键字在创建的时候指定存储目录

删除一个数据库

删除空数据库,如果数据库下面有数据表,那么就会报错
drop database myhive;
强制删除数据库,包含数据库下面的表一起删除
drop database myhive2 cascade;

创建表

CREATE [EXTERNAL]TABLE [IF NOT EXISTS]table_name[(col_name data_type [COMMENT col_comment],..)[COMMENT table_comment][PARTITIONED BY (col_name data_type [COMMENT col_comment],..)[CLUSTERED BY (col_name,col_name,...[SORTED BY (col_name [ASC IDESC],..)INTO num_buckets BUCKETS][ROW FORMAT row_format][STORED AS file_format][LOCATION hdfs_path]
  • EXTERNAL,创建外部表
  • PARTITIONED BY,分区表
  • CLUSTERED BY,分桶表
  • STORED AS,存储格式
  • LOCATION,存储位置

hive数据类型

在这里插入图片描述

hive表分类:

(1)内部表
内部表(CREATE TABLE table_name…)
未被external关键字修饰的即是内部表,即普通表。内部表又称管理表,内部表数据存储的位置由
hive.metastore.warehouse.dir参数决定(默认:/user/hive/warehouse),删除内部表会直接删除元数据
(metadata)及存储数据,因此内部表不适合和其他工具共享数据。

(2)外部表
外部表(CREATE EXTERNAL TABLE table_name…LOCATION…)
被external关键字修饰的即是外部表,即关联表。
外部表是指表数据可以在任何位置,通过LOCATION关键字指定。数据存储的不同也代表了这个表在理念是并不是Hive内部管理的,而是可以随意临时链接到外部数据上的。这意味着我们可以:

  • 先创建表,再在表对应路径创建数据
  • 先在对应目录创建数据,再创建表
    所以,表和数据是独立的,在删除外部表的时候,仅仅是删除元数据(表的信息),不会删除数据本身。
    (3)分区表
    (4)分桶表

表的hdfs文件默认分隔符

在hdfs上,hive表数据文件的默认分隔符是"\001",是一个ascii码值,在一些文本文件中显示为SOH,键盘打不出来,cat也看不出来。

设置hive表的分隔符

当然,分隔符我们是可以自行指定的。
在创建表的时候可以自己决定:
create table if not exists stu2(id int name string) row format delimited fields terminated by ‘\t’;
·row format delimited fields terminated by ‘\t’:表示以\t分隔

我们可以指定数据库.表名来指定在哪个数据库中创建表,如下:myhive.stu2
在这里插入图片描述
在hive的关系型数据库中,mysql记录的元数据一般在TBLS表中,元数据存储在TBLS中,hive数据存储在hdfs中,虽然他们看起来都是用sql操作,但hdfs存储的数据操作通过map reduce执行的。

查看表属性(eg:属于内部表or外部表…)

desc formatted 表名
返回有个table tyep字段指示了表类型,内部表市MANAGERED_TABLE,外部表市EXTERNAL_TABLE
在这里插入图片描述

内外部表转换

  • 内部表转外部表
    alter table stu set tblproperties(‘EXTERNAL’=‘TRUE’);
  • 外部表转内部表
    alter table stu set tblproperties(‘EXTERNAL’=‘FALSE’);
    通过stu set tblproperties:来修改属性
    要注意:('EXTERNAL=‘FALSE’)或(‘EXTERNAL’=‘TRUE’)为固定写法,区分大小写!!!

使用LOAD从外部加载数据到表中

LOAD DATA [LOCAL] INPATH ‘filepath’ [OVERWRITE] INTO TABLE tablename;
这里local参数如果带,则INPATHA需要使用本地文件系统的格式(带file://),表示从本地加载数据,overwrite则覆盖已存数据

需要注意的是,如果是从hdfs加载而非本地,会直接将hdfs路径的文件移动到表指定的路径,源路径的数据会不再存在,另外overwrite字段表示以当前数据为准,以前的表中数据会被清除。

值得注意的是这种方式加载不走mapreduce,因此会比较快,而下面提到的insert相关的都会走map reduce,涉及到资源申请分配,会慢些

数据加载-INSERT SELECT语法

除了load加载外部数据外,我们也可以通过SQL语句,从其它表中加载数据。
语法:
INSERT [OVERWRITE INTO]TABLE tablename1 [PARTITION (partcoll=val1,partcol2=val2 …)[IF NOT EXISTS]]select_statement1 FROM from_statement;
将SELECT查询语句的结果插入到其它表中,被SELECT查询的表可以是内部表或外部表。
示例:
INSERT INTO TABLE tbl1 SELECT FROM tbl2;
INSERT OVERWRITE TABLE tbl1 SELECT FROM tbl2;

hive表数据导出-insert overwrite方式

将hive表中的数据导出到其他任意目录,例如linux本地磁盘,例如hdfs,例如mysql等等
语法:insert overwrite [local] directory ‘path’ select_statement FROM from_statement

  • 将查询的结果导出到本地-使用默认列分隔符
    insert overwrite local directory ‘/home/hadoop/export1’ select * from test_load
  • 将查询的结果导出到本地-指定列分隔符
    insert overwrite local directory ‘/home/hadoop/export2’ row format delimited fields terminated by ‘\t’
    select * from test load;
  • 将查询的结果导出到HDFS上(不带local关键字)
    insert overwrite directory ‘/tmp/export’ row format delimited fields terminated by ‘\t’ select * from
    test_load;

hive表数据导出-hive shell

基本语法:(hive -f/ -e执行语句或者sql脚本 >> file_path)
bin/hive -e “select * from myhive.test_load;” > /home/hadoop/export3/export4.txt
bin/hive -f export.sql > /home/hadoop/export4/export4.txt
export.sql里面存放sql语句

hive分区表

所谓分区表,就是按某个字段作为分区依据,字段值相同的数据存储在同一个分区中,如按日期进行分区,同一个日期的存同一个分区(一般对应同一个文件目录),而分区也存在多层级,只用一个字段分区为单层级,如果我们先按年分区,年分区下又有月或者更多的像按日分区,那么就是多层级分区表

创建分区表

分区表的使用
基本语法:
create table tablename (…) partitioned by(分区列列类型,…)
row format delimited fields terminated by ‘’;

在这里插入图片描述

上图中示例不管是创建还是加载,都是没有包含分区列的,但实际上我们的表中会包含分区的列,此外从数据加载到分区表中,partition (month=‘202006’)表示加载到指定分区202006中,而不是从数据内容中读取202006的数据,数据里面是没有month列的,一般有几个分区则hdfs对应的表路径下有几个文件夹
在这里插入图片描述

多层级的分区表是按分区顺序创建的目录
在这里插入图片描述

对分区表的操作,像插入,是需要指定到具体每一个层级的分区才会操作成功

分桶表

分桶和分区一样,也是一种通过改变表的存储模式,从而完成对表优化的一种调优方式
但和分区不同,分区是将表拆分到不同的子文件夹中进行存储,而分桶是将表拆分到固定数量的不同文件中进行存储。

在这里插入图片描述

开启分桶表

  1. 开启分桶的自动优化(自动匹配reduce task数量和桶数量一致)
    set hive.enforce.bucketing=true;
  2. 创建分桶表
    create table course (c_id string,c_name string,t_id string) clustered by(c_id) into 3 buckets row format delimited fields terminated by ‘\t’;

上面按c_id列进行分桶
需要注意的是,分桶表不能直接通过load加载,常用的方法是通过临时表加载数据,再通过select insert into方法来插入到分桶表
在这里插入图片描述

这里需要注意的是,建表用的是clustered by,插入是cluster by

之所以不能通过load来加载分桶表数据,是因为load不涉及map reduce计算,它只是单纯的文件的操作,而分桶涉及到对指定列进行hash取模计算,会触发map reduce计算,因此需要用select insert into,进行hash取模的目的是为了确定分到哪个桶文件,分桶表对单值过滤会有效率比较高的提升,基于分桶列双表join时效率也更高,同时本身已经基于分桶id分过组了

表修改操作

表重命名

alter table old_table_name rename to new_table_name;
如:alter table score4 rename to score5;

修改表属性值

ALTER TABLE table_name SET TBLPROPERTIES table_properties;
table_properties:
:(property._name=property_value,property_name=property._value,·…)
如:ALTER TABLE table_name SET TBLPROPERT工ES(“EXTERNAL”=“TRUE”);修改内外部表属性
如:ALTER TABLE table_name SET TBLPROPERTIES(‘comment’=new_comment);修改表注释
其余属性可参见:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-listTableProperties

添加分区

ALTER TABLE tablename ADD PARTITION (month=‘201101’);
新分区是空的没数据,需要手动添加或上传数据文件

修改分区值

ALTER TABLE tablename PARTITION (month=‘202005)RENAME TO PARTITION (month=201105’);

需要注意这里修改分区后,hdfs中文件并不会改名,只是元数据中会记录分区名201105对应的文件名是原来那个文件名

删除分区

ALTER TABLE tablename DROP PARTITION (month=201105’);
只是删除元数据,数据还在

添加列

ALTER TABLE table_name ADD COLUMNS (v1 int,v2 string);

修改列名

ALTER TABLE test_change CHANGE v1 v1new INT;

删除表

DROP TABLE tablename;

清空表

TRUNCATE TABLE tablename;
ps:只可以清空内部表

array类型操作

如下数据文件,有2个列,locations列包含多个城市:
说明:name与locations.之间制表符分隔,locations中元素之间逗号分隔
在这里插入图片描述

如果我们想将locations直接当成数据操作计算,就需要用到array类型。
array类型的建表操作如下:
在这里插入图片描述

上面COLLECTION ITEMS TERMINATED BY ','表示array类型元素的分隔符是,逗号

加载之后就可以使用数组了
在这里插入图片描述

同时,我们也可以通过hive内置函数size来获得数组大小

我们也可以通过一些函数来判断数组中的值
在这里插入图片描述

map类型操作

map类型也就是常见的key-value类型

map类型建表语句

在这里插入图片描述

上面创建一个string类型的key,string类型的value的map类型,map键值对之间用"#"分隔,key和value之间用:分隔
创建好之后,就可以用类似python里面字典的方式去使用

查询map中指定key

在这里插入图片描述

取出map所有key

使用函数map_keys(mymap)可以取出mymap的所有key,返回array
在这里插入图片描述

取出map所有value,返回array

使用map_values(mymap)获取所有value数组

在这里插入图片描述

获取map大小

使用size(mymap)可获取map大小
select size(mymap) from myhive.test_map

查询指定数据是否在map中

需要注意不能直接判断指定key或value是否存在于map中,但可以借助ARRAY_CONTAINS判断,也可以判断返回数组大小
在这里插入图片描述

Struct类型

struct类型可以在一个列中再构建子列,如下案例,假如我们数据中有name和age信息,同时有id编号,我们可以用一个将name和age视为一个people_info列,在其下还有name列和age列

struct应用数据格式案例如下:
在这里插入图片描述

struct 建表语句案例如下
在这里插入图片描述

我们可以使用.来取struct的成员
在这里插入图片描述

与array和map类型不同,struct类型没有对应函数

hive SELECT 查询基本语法

如下,hive查询基本语法与mysql中基本相同,bu’y不一样的是下图中cluster by部分,跟排序相关的

在这里插入图片描述

一些基础查询案例如下:

在这里插入图片描述

上面用like来进行模糊匹配,表示useraddress中包含广东字段的都会被选中,%在前表示忽略广东前的字符串,在后面表示忽略广东后的字符,只要包含子串广东即可,如果我们不想忽略所有,只想忽略一个,可以用_下划线代替

一些结合内置计算的查询案例如下:

在这里插入图片描述

值得注意的是上面最后一个查询用having进行过滤,对按userid分组后,每个分组内平均值大于10000消费的数据进行过滤,与where用法类似,但where不能用于聚合函数之后的结果,只能用在聚合函数之前,having通常跟随group by在其之后使用

join操作

在这里插入图片描述

RLIKE正则匹配

hive sql中提供了RLIKE支持正则匹配

常见正则匹配符号
在这里插入图片描述

通过组合正则符号,可以灵活实现匹配,如.匹配任意字符,*匹配人员数量,则 .*匹配任意数量字符,包括空,下面来看几个例子
在这里插入图片描述

上面第一个sql用.*就实现了我们之前用like模糊匹配%的作用,第三个用[]匹配括号里面的任一个字符,\S去除非空白字符,这里需要注意,所有的\前面都需要加个\,第四个\S后面用{4}限定4个,[0-9]表示匹配0-9之间的任意数字,再用{3}限定匹配个数,其他匹配可参考正则规则自行组合。

UNION联合

UNION用于将多个SELECT语句的结果组合成单个结果集。
每个select语句返回的列的数量和名称必须相同。否则,将引发架构错误。
union基础语法:
在这里插入图片描述

UNION默认会对相同的行做去重,如果不想去重,需要加上ALL,联合的结果按行来组合

在这里插入图片描述

在这里插入图片描述

任何可以用select的地方,返回列相同,都可以用union

Hive数据抽样

对表进行随机抽样是非常有必要的。
大数据体系下,在真正的企业环境中,很容易出现很大的表,比如体积达到TB级别。
对这种表一个简单的SELECT*都会非常的慢,哪怕LIMIT10想要看1O条数据,也会走MapReduce流程
这个时间等待是不合适的。
Hiv提供的快速抽样的语法,可以快速从大表中随机抽取一些数据供用户查看。

TABLESAMPLE函数

进行随机抽样,本质上就是用TABLESAMPLE函数

语法1,基于随机分桶抽样

SELECT … FROM tbl TABLESAMPLE(BUCKET x OUT OF y ON(colname rand())
·y表示将表数据随机划分成y份(y个桶)
·x表示从y里面随机抽取x份数据作为取样
·colname表示随机的依据基于某个列的值
·rand()表示随机的依据基于整行
colname和rand二选一
示例:
SELECT username,orderId,totalmoney FROM itheima.orders TABLESAMPLE(BUCKET 1 OUT OF 10 ON username);
在这里插入图片描述

SELECT FROM itheima.orders TABLESAMPLE(BUCKET 1 OUT OF 10 ON rand());
注意:
·使用colname作为随机依据,则其它条件不变下,每次抽样结果一致
·使用rand()作为随机依据,每次抽样结果都不同

通常场景用rand比较快,分桶表的话如果刚好是按colname分桶,用colname比较快

语法2,基于数据块抽样

SELECT … FROM tbl TABLESAMPLE(num ROWS
num PERCENT
num(K|MG));
·num ROWS表示抽样num条数据
·num PERCENT表示抽样num百分百比例的数据
·num(K|M|G)表示抽取num大小的数据,单位可以是K、M、G表示KB、MB、GB
注意:
使用这种语法抽样,条件不变的话,每一次抽样的结果都一致
即无法做到随机,只是按照数据顺序从前向后取

在这里插入图片描述

Virtual Columns虚拟列

虚拟列是Hive内置的可以在查询语句中使用的特殊标记,可以查询数据本身的详细参数。
Hive目前可用3个虚拟列:
·INPUT_FILE_NAME,显示数据行所在的具体文件
·BLOCK_OFFSET_INSIDE FILE,显示数据行所在文件的偏移量
·ROW OFFSET INSIDEBLOCK,显示数据所在HDFS块的偏移量,此虚拟列需要设置:SET hive.exec.rowoffset=true才可使用

在这里插入图片描述

虚拟列也可以用在where、group by等语句中,根据INPUT_FILE_NAME分组实际上就是分桶。

HIVE函数

Hive的函数分为两大类:内置函数(Built-in Functions)、用户定义函数UDF(User-Defined Functions);

详细的函数使用可以参阅:
·官方文档
(https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-MathematicalFunctions)

  1. 使用show functions查看当下可用的所有函数;
  2. 通过describe function extended funcname来查看函数的使用方式。

内置函数 - 数值函数

几个常用数值函数示例:
-取整函数:round
返回double类型的整数值部分(遵循四舍五入)
select round (3.1415926):
–指定精度取整函数:round(double a,intd返回指定精度d的double类型
select round(3.1415926, 4);
–取随机数函数:rand每次执行都不一样返回一个0到1范围内的随机数
select rand();
–指定种子取随机数函数:rand(int seed)得到一个稳定的随机数序列
select rand(3);
一求数字的绝对值
select abs(-3):
–得到pi值(小数点后15位精度)
select pi();

内置函数 - 集合函数 COLLECTION FUNCTIONS

以下是hive全部集合函数
在这里插入图片描述

内置函数 - 类型转换函数

在这里插入图片描述

如下示例,需要注意字符串转数值也是不是什么都能转的
在这里插入图片描述

内置函数 – 时间日期函数

部分常用日期函数如下:
在这里插入图片描述

在这里插入图片描述

内置函数–条件函数

hive的条件函数并不多,以下是全部条件函数列表
在这里插入图片描述

上面的if用法,如果条件为真,返回valueTrue,否则返回valueFalseOrNull
在这里插入图片描述

另外,case when的用法中,如下例,会返回username和新增一列对应返回值
在这里插入图片描述

在这里插入图片描述

coalesce的用法,正如表中描述,返回第一个给定列中不为空的列值并组合成新列,我们也可以给定默认值在参数中,把返回值作为新列,这样就能填充空为默认值。如:
SELECT product_id, COALESCE(commission, 0) AS commission_or_zero FROM sales;
这样commission_or_zero就不会存在空值。

内置函数–字符串函数

下面是部分常用字符串函数
在这里插入图片描述

脱敏函数

hive的脱敏函数包含计算hash、加密等,具体可查阅官方文档
在这里插入图片描述

其他常用函数

比较简单,直接看案例即可

hash()
current_user()
current_database()
version()
md5()

在这里插入图片描述

ETL概念

从表tb1 查询数据进行数据过滤和转换,并将结果写入到tb2表中的操作
这种操作,本质上是一种简单的ETL行为。
ETL:
·E,Extract,抽取
·T,Transform,转换
·L,Load,加载
从A抽取数据(E),进行数据转换过滤(T),将结果加载到B(L),就是ETL。

BI

BI
Bl:Business Intelligence,商业智能。
指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。
简单来说,就是借助工具,可以完成复杂的数据分析、数据统计等需求,为公司决策带来巨大的价值。
所以,一般提到B,我们指代的就是工具软件。常见的B软件很多,比如:
·FineBl
·SuperSet
·PowerBI
·TableAu

FineBI的介绍:https://www.finebi.com/
FineBI是帆软软件有限公司推出的一款商业智能(Business Intelligence)产品。FineBI是定位于自助大
数据分析的I工具,能够帮助企业的业务人员和数据分析师,开展以问题导向的探索式分析。
通过fineBi可以连接hive的数据库并将我们的数据进行可视化分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/805382.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NumPy入门(一)

NumPy入门(一) 工具: jupyter notebook jupyter notebook 功能 : 数据处理 (python 处理数据功能) coding文字型的描述 富文本 word可视化支持 官网: https://jupyter.org/ 启动命令 jupyter notebook 1.1 numpy简介 Python的拓展库, 提供数据对象 nda…

【数据下载】SODA数据更新至2022并教学下载

【数据下载】SODA数据更新至2022并教学下载 我为什么那么喜欢使用SODA数据? 就是三维网格化的数据,好用。 但是需要高分辨率还是需要找别的。 以前分享过SODA数据下载,但上次版本过于凌乱。因此重新借助更新再分享一次,不为过。…

人脸识别业务(基于腾讯人脸识别接口)

使用腾讯云人脸识别接口,基于优图祖母模型。 一、准备工作 人脸识别账号 申请腾讯云服务器账号,生成自己的秘钥。记录秘钥和秘钥ID。 创建人员库 记下人员库id 在配置文件application.yml中添加配置。 plateocr:SecretId: 秘钥IDSecretKey: 秘钥ser…

Day1 省选衔接题 思路总结

Day1 省选题 思路 取数 可反悔的贪心。我们开一个双向链表记录此时每个数的前/后一个数是什么。一个简单但不一定正确的贪心策略即为:每次都取走当前值最大的且可取的数,并更新列表。考虑如何使这个贪心思路正确。 设 p r e x pre_x prex​ 表示 x x …

Path Aggregation Network for Instance Segmentation

PANet 摘要1. 引言2.相关工作3.框架 PANet 最初是为 proposal-based 实例分割框架提出来的,mask 是实例的掩码,覆盖了物体包含的所有像素,proposal 在目标检测领域是可能存在目标的区域。在实例分割中,首先利用RPN(Region Proposa…

练习题(2024/4/10)

1. 删除有序数组中的重复项 给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums 的唯一元…

2022年蓝桥杯省赛——直线

目录 题目链接:11.直线 - 蓝桥云课 (lanqiao.cn) 题目描述 思路 代码思路如下 代码实现 坑来喽~~ 导致这个BUG的原因!!! 总结 整体的 两种b的情况对比数据 题目链接:11.直线 - 蓝桥云课 (lanqiao.cn) 题目描…

JVM面试整理--对象的创建和堆

文章目录 对象的创建过程是怎样的?对象在内存中的结构是怎样的(专业的叫法:对象的内存布局)对象在内存分配时使用的哪种方式(有的地方也称为:分配算法)知道什么是“指针碰撞”吗?知道什么是“空…

LeetCode 80—— 删除有序数组中的重复项 II

阅读目录 1. 题目2. 解题思路3. 代码实现 1. 题目 2. 解题思路 让 index指向删除重复元素后数组的新长度;让 st_idx 指向重复元素的起始位置,而 i 指向重复元素的结束位置,duplicate_num代表重复元素的个数;一段重复元素结束后&am…

php校园活动报名系统vue+mysql

开发语言:php 后端框架:Thinkphp/Laravel 前端框架:vue.js 服务器:apache 数据库:mysql 运行环境:phpstudy/wamp/xammp等本选题则旨在通过标签分类管理等方式,管理员;首页、个人中心、学生管理、…

Redis 缓存穿透、缓存击穿、缓存雪崩区别和解决方案

缓存穿透 什么是缓存穿透? 缓存穿透说简单点就是大量请求的 key 是不合理的,根本不存在于缓存中,也不存在于数据库中 。这就导致这些请求直接到了数据库上,根本没有经过缓存这一层,对数据库造成了巨大的压力&#xf…

2、Qt UI控件 -- qucsdk项目使用

前言:上一篇文章讲了qucsdk的环境部署,可以在QDesigner和Qt Creator中看到qucsdk控件,这一篇来讲下在项目中使用qucsdk库中的控件。 一、准备材料 要想使用第三方库,需要三个先决条件, 1、控件的头文件 2、动/静态链…

记录vue之npm run serve报错SET NODE_OPTIONS

> vue-antd-pro3.0.0 serve > SET NODE_OPTIONS--openssl-legacy-provider && vue-cli-service servesh: SET: command not found 一定要注意:将 SET NODE_OPTIONS–openssl-legacy-provider && 删除即可

17 - Games101 - 笔记 - 材质与外观

**17 **材质与外观 材质与BRDF 自然界中的材质:丝绸、头发、蝴蝶翅膀表面、寿司表面等等 图形学中的材质:同一个模型之所以渲染出不同结果的原因就是因为材质。在图形学中是给不同的物体指定不同的材质,知道它们如何和光线作用后就能正确的…

C++11 数据结构0 什么是 “数据结构“?数据,数据对象,数据元素,数据项 概念。算法的基本概念 和 算法的度量,大O表示法,空间换时间的代码

数据: 是能输入计算机且能被计算机处理的各种符号的集合。数值型的数据:整数和实数。非数值型的数据:文字、图像、图形、声音等。 数据对象: 性质相同的 "数据元素" 的集合 例如一个 int arr[10], Teacher tea[3]; 数…

汽车4S行业的信息化特点与BI建设挑战

汽车行业也是一个非常大的行业,上下游非常广,像主机厂,上游的零配件,下游的汽车流通,汽车流通之后的汽车后市场,整个链条比较长。今天主要讲的是汽车流通,汽车4S集团。一个汽车4S集团下面授权代…

MySQL高级篇(存储引擎InnoDB、MyISAM、Memory)

目录 1、存储引擎简介 1.1、查询建表语句,默认存储引擎:InnoDB 1.2、查看当前数据库支持的存储引擎 1.3、创建表,并指定存储引擎 2、 存储引擎-InnoDB介绍 2.1、存储引擎特点 3、MyISAM存储引擎 4、Memory存储引擎 5、InnoDB、MyISAM、Memory…

HTML基础(3)

1、内联框架 iframe用于在网页内显示网页&#xff0c;语法如下&#xff1a; <iframe src"URL"></iframe> URL指向隔离页面 hight&#xff0c;weight设置高宽&#xff0c;删除边框将frameborder设置为0 <td> <iframe frameborder"0&qu…

麒麟v10安装mysql-8.0.35

因为要修复漏洞的原因&#xff0c;这两天将麒麟v10操作系统的服务器上的MySQL版本由5.7.27升级到8.0.35&#xff08;mysql安装包下载地址&#xff1a;MySQL :: Download MySQL Community Server (Archived Versions)&#xff09;&#xff0c;mysql的安装过程主要参考了这个博主…