LeetCode-322. 零钱兑换【广度优先搜索 数组 动态规划】
- 题目描述:
- 解题思路一:Python动态规划五部曲:定推初遍举【先遍历物品 后遍历背包】
- 解题思路二:Python动态规划五部曲:定推初遍举【先遍历背包 后遍历物品】
- 解题思路三:0
题目描述:
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3
输出:-1
示例 3:
输入:coins = [1], amount = 0
输出:0
提示:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104
解题思路一:Python动态规划五部曲:定推初遍举【先遍历物品 后遍历背包】
-
确定dp数组以及下标的含义
dp[j]:凑足总额为j所需钱币的最少个数为dp[j] -
确定递推公式
凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])
所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。
递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
- dp数组如何初始化
首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;
其他下标对应的数值呢?
考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。
所以下标非0的元素都是应该是最大值。
- 确定遍历顺序
本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。
所以本题并不强调集合是组合还是排列。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
在动态规划专题我们讲过了求组合数是动态规划:518.零钱兑换II (opens new window),求排列数是动态规划:377. 组合总和 Ⅳ (opens new window)。
所以本题的两个for循环的关系是:外层for循环遍历物品,内层for遍历背包或者外层for遍历背包,内层for循环遍历物品都是可以的!
那么我采用coins放在外循环,target在内循环的方式。
本题钱币数量可以无限使用,那么是完全背包。所以遍历的内循环是正序
综上所述,遍历顺序为:coins(物品)放在外循环,target(背包)在内循环。且内循环正序。
- 举例推导dp数组
以输入:coins = [1, 2, 5], amount = 5为例
class Solution:def coinChange(self, coins: List[int], amount: int) -> int:dp = [float('inf')] * (amount + 1) # 最终需要dp[amount]dp[0] = 0for coin in coins:for j in range(coin, amount + 1):dp[j] = min(dp[j], dp[j-coin] + 1)return dp[amount] if dp[amount] != float('inf') else -1
时间复杂度:O(n)
空间复杂度:O(n)
解题思路二:Python动态规划五部曲:定推初遍举【先遍历背包 后遍历物品】
class Solution:def coinChange(self, coins: List[int], amount: int) -> int:dp = [float('inf')] * (amount + 1)dp[0] = 0for i in range(1, amount + 1): # 遍历背包容量for coin in coins: # 遍历物品if i - coin >= 0:# 更新凑成金额 i 所需的最少硬币数量dp[i] = min(dp[i], dp[i - coin] + 1)return dp[amount] if dp[amount] != float('inf') else -1
时间复杂度:O(n)
空间复杂度:O(n)
解题思路三:0
时间复杂度:O(n)
空间复杂度:O(n)