代码算法训练营day14 | 理论基础、递归遍历

day14:

  • 理论基础
    • 二叉树的分类:
    • 二叉树的种类:
      • 满二叉树
      • 完全二叉树
      • 二叉搜索树
      • 平衡二叉搜索树
    • 二叉树的存储方式:
      • 链式存储
      • 顺序存储
    • 二叉树的遍历方式:
      • 深度优先和广度优先遍历实现方式
    • 二叉树的定义:
  • 递归遍历
    • 递归三要素:
    • 举例子:
    • 前序遍历:
    • 中序遍历:
    • 后序遍历:

理论基础

二叉树的分类:

二叉树分类

二叉树的种类:

满二叉树

满二叉树:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。
满二叉树
这棵二叉树为满二叉树,也可以说深度为k,有2^k-1个节点的二叉树。(k从1开始)

完全二叉树

完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层(h从1开始),则该层包含 1~ 2^(h-1) 个节点。
完全二叉树
之前我们刚刚讲过优先级队列其实是一个堆,堆就是一棵完全二叉树,同时保证父子节点的顺序关系。

二叉搜索树

前面介绍的树,都没有数值的,而二叉搜索树是有数值的了,二叉搜索树是一个有序树。

若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
它的左、右子树也分别为二叉排序树
在这里插入图片描述

平衡二叉搜索树

平衡二叉搜索树:又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
在这里插入图片描述
最后一棵 不是平衡二叉树,因为它的左右两个子树的高度差的绝对值超过了1。

C++中map、set、multimap,multiset的底层实现都是平衡二叉搜索树,所以map、set的增删操作时间时间复杂度是logn,注意我这里没有说unordered_map、unordered_set,unordered_map、unordered_set底层实现是哈希表。

二叉树的存储方式:

二叉树可以链式存储,也可以顺序存储。
那么链式存储方式就用指针, 顺序存储的方式就是用数组。
顾名思义就是顺序存储的元素在内存是连续分布的,而链式存储则是通过指针把分布在各个地址的节点串联一起。

链式存储

在这里插入图片描述

顺序存储

在这里插入图片描述
如果父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2。
但是用链式表示的二叉树,更有利于我们理解,所以一般我们都是用链式存储二叉树。

所以大家要了解,用数组依然可以表示二叉树。

二叉树的遍历方式:

二叉树主要有两种遍历方式:

  1. 深度优先遍历:先往深走,遇到叶子节点再往回走。
  2. 广度优先遍历:一层一层的去遍历。

这两种遍历是图论中最基本的两种遍历方式。
深度优先遍历
3. 前序遍历(递归法,迭代法)
4. 中序遍历(递归法,迭代法)
5. 后序遍历(递归法,迭代法)
广度优先遍历
6. 层次遍历(迭代法)

这里前中后序,其实指的就是中间节点的遍历顺序,只要大家记住 前中后序指的就是中间节点的位置就可以了。
看如下中间节点的顺序,就可以发现,中间节点的顺序就是所谓的遍历方式:

  • 前序遍历:中左右
  • 中序遍历:左中右
  • 后序遍历:左右中
    在这里插入图片描述

深度优先和广度优先遍历实现方式

我们做二叉树相关题目,经常会使用递归的方式来实现深度优先遍历,也就是实现前中后序遍历,使用递归是比较方便的。
之前我们讲栈与队列的时候,就说过栈其实就是递归的一种实现结构,也就说前中后序遍历的逻辑其实都是可以借助栈使用递归的方式来实现的。
而广度优先遍历的实现一般使用队列来实现,这也是队列先进先出的特点所决定的,因为需要先进先出的结构,才能一层一层的来遍历二叉树。

二叉树的定义:

我们来看看链式存储的二叉树节点的定义方式:

struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

大家会发现二叉树的定义 和链表是差不多的,相对于链表 ,二叉树的节点里多了一个指针, 有两个指针,指向左右孩子。
TreeNode(int x) : val(x), left(NULL), right(NULL) {}的意思是创建一个新的TreeNode对象,其值为x,并且它的左右子节点都被初始化为NULL。


递归遍历

递归三要素:

介绍前后中序的递归写法,要通过简单题目把方法论确定下来,有了方法论,后面才能应付复杂的递归。
这里确定下来递归算法的三个要素。每次写递归,都按照这三要素来写:

  1. 确定递归函数的参数和返回值: 确定哪些参数是递归的过程中需要处理的,那么就在递归函数里加上这个参数, 并且还要明确每次递归的返回值是什么进而确定递归函数的返回类型。
  2. 确定终止条件: 写完了递归算法, 运行的时候,经常会遇到栈溢出的错误,就是没写终止条件或者终止条件写的不对,操作系统也是用一个栈的结构来保存每一层递归的信息,如果递归没有终止,操作系统的内存栈必然就会溢出。
  3. 确定单层递归的逻辑: 确定每一层递归需要处理的信息。在这里也就会重复调用自己来实现递归的过程。

举例子:

以前序遍历为例:(中左右)
4. 确定递归函数的参数和返回值: 因为要打印出前序遍历节点的数值,所以参数里需要传入vector数组来放节点的数值,还要再放一个根节点,除此之外就不需要再处理什么数据了也不需要有返回值,所以递归函数返回类型就是void,代码如下:

void traversal(TreeNode* cur, vector<int>& vec)
  1. 确定终止条件: 在递归的过程中,如何算是递归结束了呢,当然是当前遍历的节点是空了,那么本层递归就要结束了,所以如果当前遍历的这个节点是空,就直接return,返回到上一层的递归中,代码如下:
if (cur == NULL) return;

确定单层递归的逻辑: 前序遍历是中左右的循序,所以在单层递归的逻辑,是要先取中节点的数值,再取左节点的数值,最后取右节点的数值。代码如下:

vec.push_back(cur->val);    // 中
traversal(cur->left, vec);  // 左
traversal(cur->right, vec); // 右

单层递归的逻辑就是按照中左右的顺序来处理的,这样二叉树的前序遍历,基本就写完了。

前序遍历:

class Solution {
public:void traversal(TreeNode* cur, vector<int>& vec) {if (cur == NULL) return;vec.push_back(cur->val);    // 中traversal(cur->left, vec);  // 左traversal(cur->right, vec); // 右}vector<int> preorderTraversal(TreeNode* root) {vector<int> result;traversal(root, result);return result;}
};

中序遍历:

void traversal(TreeNode* cur, vector<int>& vec) {if (cur == NULL) return;traversal(cur->left, vec);  // 左vec.push_back(cur->val);    // 中traversal(cur->right, vec); // 右
}

后序遍历:

void traversal(TreeNode* cur, vector<int>& vec) {if (cur == NULL) return;traversal(cur->left, vec);  // 左traversal(cur->right, vec); // 右vec.push_back(cur->val);    // 中
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/802906.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(学习日记)2024.04.11:UCOSIII第三十九节:软件定时器

写在前面&#xff1a; 由于时间的不足与学习的碎片化&#xff0c;写博客变得有些奢侈。 但是对于记录学习&#xff08;忘了以后能快速复习&#xff09;的渴望一天天变得强烈。 既然如此 不如以天为单位&#xff0c;以时间为顺序&#xff0c;仅仅将博客当做一个知识学习的目录&a…

Vue文档

Vue是什么&#xff1f;为什么要学习他 Vue是什么&#xff1f; Vue是前端优秀框架&#xff0c; 是一套用于构建用户界面的渐进式框架 为什么要学习Vue Vue是目前前端最火的框架之一Vue是目前企业技术栈中要求的知识点Vue可以提升开发体验Vue学习难度较低… Vue开发前的准备 安…

分享 3 个实时人工智能图像生成工具

如果有人还需要开源人工智能技术快速发展的实例&#xff0c;那就是实时 Diffusion 。一年前&#xff0c;如果想分析单个单词对图像提示的影响&#xff0c;甚至尝试使用 Diffusion 模型替换视频中的面孔&#xff0c;需要两件事&#xff1a; 处理开源代码自建 WEB 应用程序 到 …

springboot项目引入swagger

1.引入依赖 创建项目后&#xff0c;在 pom.xml 文件中引入 Swagger3 的相关依赖。回忆一下&#xff0c;我们集成 Swagger2 时&#xff0c;引入的依赖如下&#xff1a; <dependency><groupId>io.springfox</groupId><artifactId>springfox-swagger2&…

2024智能计算、大数据应用与信息科学国际会议(ICBDAIS2024)

2024智能计算、大数据应用与信息科学国际会议(ICBDAIS2024) 会议简介 智能计算、大数据应用与信息科学之间存在相互依存、相互促进的关系。智能计算和大数据应用的发展离不开信息科学的支持和推动&#xff0c;而信息科学的发展又需要智能计算和大数据应用的不断拓展和应用。智…

Jmeter —— jmeter利用取样器中http发送请求

使用Jmeter发送HTTP请求 取样器是用来模拟用户操作&#xff0c;向服务器发送请求以及接收服务器的响应数 据的一类元件&#xff0c;其中HTTP请求取样器是用来模拟常用的http请求的 步骤如下&#xff1a; 步骤一&#xff1a;添加线程组 右击测试计划——添加——线程&#x…

如何制作exe文件第一步

目录 0.图片链接1.Welcome&#xff08;可跳过&#xff09;2.Project type--作用选择制作jar包的模式3.定义生成exe应用文件命名和输出地址4.配置执行信息4.1配置应用执行显示方式、安装名称、和显示图标4.2是否重定向日志文件&#xff08;根据需要进行选择&#xff09;4.3配置安…

Docker使用— Docker部署安装Nginx

Nginx简介 Nginx 是一款高性能的 web 服务器、反向代理服务器以及电子邮件&#xff08;IMAP/POP3/SMTP&#xff09;代理服务器&#xff0c;由俄罗斯开发者伊戈尔塞索耶夫&#xff08;Igor Sysoev&#xff09;编写&#xff0c;并在2004年10月4日发布了首个公开版本0.1.0。Nginx…

深入理解Linux veth虚拟网络设备:原理、应用与在容器化架构中的重要性

在Linux网络虚拟化领域&#xff0c;虚拟以太网设备&#xff08;veth&#xff09;扮演着至关重要的角色&#x1f310;。veth是一种特殊类型的网络设备&#xff0c;它在Linux内核中以成对的形式存在&#xff0c;允许两个网络命名空间之间的通信&#x1f517;。这篇文章将从多个维…

40.Python从入门到精通—Python3 JSON 数据解析 Python3 日期和时间 什么是时间元组? 获取当前时间 获取格式化的时间

40.Python从入门到精通—Python3 JSON 数据解析 Python3 日期和时间 什么是时间元组&#xff1f; 获取当前时间 获取格式化的时间 Python3 JSON 数据解析Python3 日期和时间什么是时间元组&#xff1f;获取当前时间获取格式化的时间 Python3 JSON 数据解析 Python3 中可以使用…

SD-WAN企业组网塑造智能网络

云桥通SD-WAN技术正在成为企业网络架构的主流选择&#xff0c;它通过智能管理和控制网络&#xff0c;为客户提供灵活、安全和高效的网络连接&#xff0c;以满足不断增长的业务需求。 云桥通SD-WAN为客户提供的业务能力&#xff1a; A. 提高网络性能 通过智能路由和负载均衡功…

MuJoCo 入门教程(五)Python 绑定

系列文章目录 前言 本笔记本提供了使用本地 Python 绑定的 MuJoCo 物理入门教程。 版权声明 DeepMind Technologies Limited 2022 年版权所有。 根据 Apache License 2.0 版&#xff08;以下简称 "许可协议"&#xff09;授权&#xff1b;除非遵守许可协议&am…

Linux文件打开及创建(3.31)

创建一个file1文件。 运行结果&#xff1a;

DataX 数据库同步部分源码解析

在工作中遇到异构数据库同步的问题,从Oracle数据库同步数据到Postgres&#xff0c;其中的很多数据库表超过百万&#xff0c;并且包含空间字段。经过筛选&#xff0c;选择了开源的DataXDataX Web作为基础框架。DataX 是阿里云的开源产品&#xff0c;大厂的产品值得信赖&#xff…

transformer上手(2) —— 注意力机制

自从 2017 年 Google 发布《Attention is All You Need》之后&#xff0c;各种基于 Transformer 的模型和方法层出不穷。尤其是 2018 年&#xff0c;OpenAI 发布的 GPT 和 Google 发布的 BERT 模型在几乎所有 NLP 任务上都取得了远超先前最强基准的性能&#xff0c;将 Transfor…

js通过Object.defineProperty实现数据响应式

目录 数据响应式属性描述符propertyResponsive 依赖收集依赖队列寻找依赖 观察器 派发更新Observer完整代码关于数据响应式关于Object.defineProperty的限制 数据响应式 假设我们现在有这么一个页面 <!DOCTYPE html> <html lang"en"><head><m…

Oracle表空间满清理方案汇总分享

目录 前言思考 一、第一种增加表空间的数据文件数量达到总容量的提升 二、第二种解决方案针对system和sysaux的操作 2.1SYSTEM表空间优化 2.2sysaux表空间回收 2.2.1针对sysaux的表空间爆满还有第二套方案维护 三、第三种解决方案使用alter tablespace resize更改表空间的…

深入浅出 -- 系统架构之微服务架构的新挑战

尽管微服务架构有着高度独立的软件模块、单一的业务职责、可灵活调整的技术栈等优势&#xff0c;但也不能忽略它所带来的弊端。本篇文章&#xff0c;我们从网络、性能、运维、组织架构和集成测试五个方面来聊一下设计微服务架构需要考虑哪些问题&#xff0c;对设计有哪些挑战呢…

Webots常用的执行器(Python版)

文章目录 1. RotationalMotor2. LinearMotor3. Brake4. Propeller5. Pen6. LED 1. RotationalMotor # -*- coding: utf-8 -*- """motor_controller controller."""from controller import Robot# 实例化机器人 robot Robot()# 获取基本仿真步长…

ChatGPT/GPT4科研应用与绘图技术及论文写作

2023年随着OpenAI开发者大会的召开&#xff0c;最重磅更新当属GPTs&#xff0c;多模态API&#xff0c;未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义&#xff0c;不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车…