面试字节被挂了

分享一个面试字节的经历。

1、面试过程

一面:上来就直接"做个题吧",做完之后,对着简历上一个项目聊,一直聊到最后,还算比较正常。

二面:做自我介绍,花几分钟聊了一个项目,剩下20分钟全聊基础,CNN、pooling、1x1卷积,最后又做了一个题。

三面:做了个自我介绍,聊 GPU 与显存的内容,然后跟我讲业务,反问了我一句:"你们这个从0到1之后能从1到100吗?有可持续研究的价值吗?",问的是一脸懵。

最后在反问环节,我了解到他们部门竟然以NLP为主,但是面试问的全是 CV 方向的。

最后面试挂了,真的很奇葩。

图片

这让我回想起几年前我面试某大厂的时候,被问到了很多深度学习相关的知识,那时的我懂的不多,可以说是被面试官360度无死角蹂躏。

那次面试,印象最深的就是被问到了和上面的小伙伴遇到的一样的问题:1X1卷积的作用。

今天就介绍一下:在卷积神经网络中,1x1的卷积都有什么作用?

2、在卷积神经网络中,1x1的卷积有什么作用呢?

大概有以下几个作用。

第一是可以实现输出feature map(特征图)的升维和降维

第二个是可以减少模型中的参数量,从而减少计算量,提升模型的推理性能

除此之外,就是使用1x1的卷积可以增加网络的深度,从而提升模型的非线性表达能力。

3、1x1的卷积是如何实现升维和降维的

这里说的1x1的卷积实现升维和降维的功能,指的是 feature map 通道维度的改变,也即特征维度的改变。

这是因为1x1的卷积,卷积核长宽尺寸都是 1,在计算的过程中,不存在长、宽方向像素之间的融合计算(乘累加计算),而仅仅存在通道之间的融合计算。

因此,在这种情况下,1x1的卷积所能改变的仅仅是通道数。

而从卷积算法上可以看出,卷积核的个数就是卷积输出的通道数。因此如果想让输出特征图的通道数增大,就要使用更多数量的卷积核来做卷积,从而实现特征维度的升或者降。

4、1x1的卷积是如何减少模型参数的

减少参数量可以这么理解:在输出相同特征图的前提下,将一个普通的卷积,替换成一个1x1的卷积加上另一个卷积,先进行降维,然后计算,如此一来整体的计算量要比普通卷积少。

图片

举个例子,如上图所示。

假设一个卷积的输入通道是128,输出通道是32,如果不使用1x1的卷积,那么整个卷积的乘累加计算量是:

28x28x128x3x3x32 = 28901376

而如果使用1x1的卷积先降维处理,然后在降维之后的特征图上进行一个卷积计算,那么整体的乘累加计算量为:

128x28x28x16 + 28x28x16x3x3x32 = 5218304

两者对比,后者比前者减少了80%的计算量。

5、如何理解1x1卷积可以提升模型的非线性表达能力

神经网络模拟的就是一个非线性系统,之所以在卷积层后面增加非线性层,比如Relu层,其实就是这个道理。

而1x1的卷积可以使得在完成相同卷积功能的前提下,网络的层数变得更深(如上面的例子,一个普通卷积变成了2层卷积)。

网络层数的加深,就会导致更多非线性层数的增加,从而使得整个神经网络模型的非线性表达能力更强。

6、1x1的卷积还有其他哪些优势吗

1x1的卷积还可以增加通道之间的融合程度。

由于1x1卷积不存在长宽方向的像素融合,所有的计算都是通道之间的交叉计算,因此,可以更好的完成通道间的融合,而通道代表的是特征,因此可以更好的实现特征融合。

这一点,和全连接类似(因为1x1的卷积就可以表示为全连接)。

总之,如果在面试过程中被问到关于1x1的卷积问题,把上面的几点回答出来,这个问题基本就可以了,不知道有没有小伙伴被问道过这个问题呢,欢迎大家在评论区交流学习一下~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/802582.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据库入门-----SQL基础知识

目录 📖前言: 📑SQL概述&&通用语法: 🐳DDL: 🐻操作数据库: 🐞数据类型: 🦉操作表: 🦦DML: 语法规则&#x…

浅析安全传输协议HTTPS之“S”

当前互联网,在各大浏览器厂商和CA厂商的推动下,掀起了一股HTTPS应用浪潮。为了让大家更好的了解HTTPS,本文给大家介绍关于HTTPS 中的S一个整体的认识。从其产生的历史背景、设计目标说起,到分析其协议设计结构、交互流程是如何实现…

R语言数据操纵:常用函数

目录 处理循环的函数 lapply函数 apply函数 mapply函数 tapply函数 split函数 排序的函数 sort函数与order函数 总结数据信息的函数 head函数与tail函数 summary函数 str函数 table函数 any函数 all函数 xtab函数 object.size函数 这篇文章主要介绍R语言中处理…

HarmonyOS 开发-一镜到底“页面转场”动画

介绍 本方案做的是页面点击卡片跳转到详情预览的转场动画效果 效果图预览 使用说明 点击首页卡片跳转到详情页,再点击进入路由页面按钮,进入新的路由页面 实现思路 首页使用了一种视觉上看起来像是组件的转场动画,这种转场动画通常是通过…

swiftui macOS实现加载本地html文件

import SwiftUI import WebKitstruct ContentView: View {var body: some View {VStack {Text("测试")HTMLView(htmlFileName: "localfile") // 假设你的本地 HTML 文件名为 index.html.frame(minWidth: 100, minHeight: 100) // 设置 HTMLView 的最小尺寸…

RabbitMQ-延迟队列的使用

目录 一、使用场景 二、第一种方式:创建具有超时功能且绑定死信交换机的消息队列 三、第二种方式:创建通用延时消息 四、第三种方式:使用rabbitmq的延时队列插件,实现同一个队列中有多个不同超时时间的消息,并按时间…

春秋之境28512

题目说该CMS的/single.php路径下,id参数存在一个SQL注入漏洞。访问看一下随便点一个图片。 发现了注入点?id 那么开始查看闭合符一个 就报错了 You have an error in your SQL syntax; check the manual that corresponds to your MariaDB server version for th…

一起学习python——基础篇(10)

前言,Python 是一种面向对象的编程语言。以前大学读书的时候经常开玩笑说的一句话“如果没有对象,就new一个”。起因就是编程老师上课时经常说一句“首先,我们new一个对象”。 今天讲一下python的类和对象。 类是什么?它是一种用…

【linux】基础IO(三)

上一节基础IO我们着重理解了重定向与缓冲区,这节我们需要重点理解文件再磁盘中是怎样存储。以及上一节我们没有涉及到的知识。 stderr到时有什么用? 目录 fd-> 0 1 2:初步理解2怎样将错误与正确输出都打印在一个文件? 文件在硬…

Redis基础操作与持久化

目录 引言 一、Reids工具与数据类型 (一)Reids工具 (二)Redis数据类型 1.String(字符串) 2.Hash(哈希) 3.List(列表) 4.Set(集合&#xff…

实践笔记-linux内核版本升级(centos7)

linux内核版本升级 1.查看当前内核版本信息2.采用yum方式进行版本升级2.1导入仓库源2.2选择 ML 或 LT 版本安装2.3设置内核启动 3.删除旧版本内核 1.查看当前内核版本信息 #查看操作系统版本 cat /etc/redhat-release #查看系统内核 uname -r2.采用yum方式进行版本升级 2.1导…

白色磨砂质感html5页源码

白色磨砂质感html5页源码,简约的基础上加上了团队成员,自动打字特效音乐播放器存活时间 源码下载 https://www.qqmu.com/2980.html

vscode的源码插件GitHub Repositories

打铁还需自身硬,需要不断提升自我,提升自我的一种方式就是看源码,站在更高的维度去理解底层原理,以便以后更好的开发和解决问题,由于源码一个动不动就是几个G甚至十几个G,如果一个个源码下载下来&#xff0…

数字图像处理项目——基于BCNN和迁移学习的鸟类图像细粒度分类(论文/代码)

完整的论文代码见文章末尾 以下为核心内容 摘要 本文采用了ResNet50、VGG19、InceptionV3和Xception等四种不同的深度神经网络模型,并应用于鸟类图像的细粒度分类问题中,以探究其在该任务上的性能表现。 其中,本文使用了BCNN(B…

查分约束学习

问题模型&#xff1a; 有n个变量&#xff1a;&#xff0c;有m个约束条件 令差分数组&#xff0c;可以知道如果x1x2<q&#xff0c;那么与j和i-1有关联 由画图可知&#xff0c;如果有在i-1至j建立的有向图中跑最短路&#xff0c;那么dis[n]即为最小的约束变量 另外&#x…

Chrome浏览器如何跟踪新开标签的网络请求?

在测试一个东西的时候&#xff0c;它虽然是a链接&#xff0c;但是&#xff0c;是由前端在js里写跳转的。我又必须要知道它的跳转链接&#xff0c;只能用截屏的方式来捕捉浏览器的地址栏链接 打开浏览器控制台(F12)点击红色箭头打钩为弹出式窗口自动打开DevTools 英文版调试参…

华大单片机新建工程步骤

1.新建文件夹&#xff0c;比如00_LED 2.拷贝 hc32f460_ddl_Rev2.2.0\driver 到 00_LED 3.拷贝 hc32f460_ddl_Rev2.2.0\mcu\common 到 00_LED 4.拷贝 hc32f460_ddl_Rev2.2.0\example\ev_hc32f460_lqfp100_v2\gpio\gpio_output\source 到 00_LED 5.拷贝 hc32f460_ddl_Rev2.2.…

933.最近的请求次数

题目&#xff1a;写一个 RecentCounter 类来计算特定时间范围内最近的请求。 请你实现 RecentCounter 类&#xff1a; RecentCounter() 初始化计数器&#xff0c;请求数为 0 。int ping(int t) 在时间 t 添加一个新请求&#xff0c;其中 t 表示以毫秒为单位的某个时间&#x…

HarmonyOS 开发-使用SideBarContainer侧边栏淡入淡出动效实现案例

介绍 在2in1或平板上&#xff0c;群聊侧边栏是一种较为常用的功能&#xff0c;虽然HarmonyOS已经具备了基本的动效&#xff0c;但是部分情况下开发者可能有定制侧边栏动效的需求&#xff0c;本例主要介绍了如何基于显式动画实现侧边栏的淡入淡出动效。 效果图预览 使用说明&a…

​泛微文书定人事档案一体化管理,覆盖人事管理全过程,人事档案全量归档

人事档案是个人身份、学历、资历等方面的证据&#xff0c;与个人工资待遇、社会劳动保障、组织关系紧密挂钩&#xff0c;具有法律效力。应注重收集和鉴别、整理工作&#xff0c;提升人事档案利用率。 企业应依据国家有关人事档案管理规定&#xff0c;制定企业人事档案管理办法&…