LangChain-10 Agents langchainhub 共享的提示词Prompt

LangChainHub 的思路真的很好,通过Hub的方式将Prompt 共享起来,大家可以通过很方便的手段,短短的几行代码就可以使用共享的Prompt
我个人非常看好这个项目。
官方推荐使用LangChainHub,但是它在GitHub已经一年没有更新了, 倒是数据还在更新。

请添加图片描述

安装依赖

pip install langchainhub

Prompt

为了防止大家不能访问,我这里先把用到的模板复制一份出来。

HUMANYou are a helpful assistant. Help the user answer any questions.You have access to the following tools:{tools}In order to use a tool, you can use <tool></tool> and <tool_input></tool_input> tags. You will then get back a response in the form <observation></observation>For example, if you have a tool called 'search' that could run a google search, in order to search for the weather in SF you would respond:<tool>search</tool><tool_input>weather in SF</tool_input><observation>64 degrees</observation>When you are done, respond with a final answer between <final_answer></final_answer>. For example:<final_answer>The weather in SF is 64 degrees</final_answer>Begin!Previous Conversation:{chat_history}Question: {input}{agent_scratchpad}

编写代码

代码主要部分是,定义了一个工具tool,让Agent执行,模拟了一个搜索引擎,让GPT利用工具对自身的内容进行扩展,从而完成复杂的任务。

from langchain import hub
from langchain.agents import AgentExecutor, tool
from langchain.agents.output_parsers import XMLAgentOutputParser
from langchain_openai import ChatOpenAImodel = ChatOpenAI(model="gpt-3.5-turbo",
)@tool
def search(query: str) -> str:"""Search things about current events."""return "32 degrees"tool_list = [search]
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/xml-agent-convo")# Logic for going from intermediate steps to a string to pass into model
# This is pretty tied to the prompt
def convert_intermediate_steps(intermediate_steps):log = ""for action, observation in intermediate_steps:log += (f"<tool>{action.tool}</tool><tool_input>{action.tool_input}"f"</tool_input><observation>{observation}</observation>")return log# Logic for converting tools to string to go in prompt
def convert_tools(tools):return "\n".join([f"{tool.name}: {tool.description}" for tool in tools])agent = ({"input": lambda x: x["input"],"agent_scratchpad": lambda x: convert_intermediate_steps(x["intermediate_steps"]),}| prompt.partial(tools=convert_tools(tool_list))| model.bind(stop=["</tool_input>", "</final_answer>"])| XMLAgentOutputParser()
)agent_executor = AgentExecutor(agent=agent, tools=tool_list)
message = agent_executor.invoke({"input": "whats the weather in New york?"})
print(f"message: {message}")

运行结果

➜ python3 test10.py
message: {'input': 'whats the weather in New york?', 'output': 'The weather in New York is 32 degrees'}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/802009.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

flutter多入口点entrypoint

native中引擎对象本身消耗内存(每个引擎对象约莫消耗42MB内存) 多引擎&#xff1a;native多引擎>启动>flutter多入口点entrypoint>多main函数>多子包元素集>多(子)程序 单引擎(复用)&#xff1a;native单引擎>复用启动>flutter多入口点entrypoint>多m…

高等数学基础篇之关于圆,椭圆,圆环的应用

文章目录 前言 1.圆 1.1标准方程 1.2偏心圆 1.3参数方程 2.椭圆 2.1标准方程 2.2参数方程 2.3极坐标 3.圆环 4.扇形 前言 这篇文章主要是应对二重积分出现的一些关于圆的积分域&#xff0c;让大家大概了解一下&#xff0c;不是很详细&#xff0c;因为二重积分对几何…

uniapp请求后端接口

新建文件夹utils const request (config) > {// 拼接完整的接口路径config.url http://mm.test.cn config.url;//这里拼接的是访问后端接口的地址&#xff0c;http://mm.test.cn/prod-api/testconsole.log(config.url)//判断是都携带参数if(!config.data){config.data …

7-26 单词长度

题解&#xff1a; #include <bits/stdc.h> using namespace std; int main() {string s;getline(cin,s); //读取一行字符串char c; //记录字符int cnt 0; //用来记录长度int flag 0; //用来判断是否已经输出了第一个单词的长度for (int i 0;i<s.size(); i)…

阿里云新手用户建站必看攻略,从注册域名到网站上线需完成步骤

无论是个人还是企业新手用户&#xff0c;搭建个人或者企业网站都必须进过注册域名、购买云服务器、搭建网站、ICP备案、解析域名等步骤&#xff0c;本文为大家展示阿里云新手用户建站过程中从注册域名到网站上线需要完成的具体步骤。 1、选购域名 域名是互联网世界的门牌号码&…

什么是HW,企业如何进行HW保障?

文章目录 一、什么是HW二、HW行动具体采取了哪些攻防演练措施三、攻击方一般的攻击流程和方法四、企业HW保障方案1.建意识2.摸家底3.固城池4.配神器5.增值守 一、什么是HW 网络安全形势近年出现新变化&#xff0c;网络安全态势变得越来越复杂&#xff0c;黑客攻击入侵、勒索病…

【JavaWeb】Day37.MySQL概述——数据库设计-DML

数据库操作-DML DML英文全称是Data Manipulation Language(数据操作语言)&#xff0c;用来对数据库中表的数据记录进行增、删、改操作。 1.增加(insert) insert语法&#xff1a; 向指定字段添加数据 insert into 表名 (字段名1, 字段名2) values (值1, 值2); 全部字段添加数据…

回归预测 | MATLAB实现BO-GRNN贝叶斯优化广义回归神经网络多输入单输出预测

回归预测 | MATLAB实现BO-GRNN贝叶斯优化广义回归神经网络多输入单输出预测 目录 回归预测 | MATLAB实现BO-GRNN贝叶斯优化广义回归神经网络多输入单输出预测预测效果基本介绍程序设计参考资料预测效果 基本介绍

如何实现小程序滑动删除组件+全选批量删除组件

如何实现小程序滑动删除组件全选批量删除组件 一、简介 如何实现小程序滑动删除组件全选批量删除组件 采用 uni-app 实现&#xff0c;可以适用微信小程序、其他各种小程序以及 APP、Web等多个平台 具体实现步骤如下&#xff1a; 下载开发者工具 HbuilderX进入 【Dcloud 插…

使用Datax自定义采集组件Reader/Writer实现国产数据库支持以及_Datax数据清洗/过滤规则功能自定义---大数据之DataX工作笔记007

我们基于datax来做的自己的数据采集系统,现在基本的数据采集已经实现了,也就是调用datax的数据采集能力,实现在已支持的数据库之间同步数据.我们是基于datax-web实现的,里面都有开源的代码了,可以分析以后拿过来用,这个过程并不复杂,而且,结合xxljob的web那个开源项目,也可以让…

Redis 和 Mysql 数据库数据如何保持一致性

Redis 和 Mysql 数据库数据如何保持一致性 保持Redis和MySQL数据库数据一致性是一个常见且重要的问题&#xff0c;特别是在使用Redis作为MySQL数据库的缓存层时。以下是几种常用的保证二者数据一致性的策略和方法&#xff1a; 双写一致性&#xff08;同步更新&#xff09;&…

Windows完全卸载MySQL后再下载安装(附安装包)

目录 友情提醒第一章&#xff1a;如何完全卸载干净mysql教程&#xff08;三个步骤完全卸载&#xff09;1&#xff09;步骤一&#xff1a;卸载程序2&#xff09;步骤二&#xff1a;删除文件3&#xff09;步骤三&#xff1a;删除注册表信息 第二章&#xff1a;下载软件两种方式1&…

RuleEngine规则引擎底层改造AviatorScript 之公式规则

前情提要&#xff0c;看上一个文章&#xff0c;具体要实现的效果就是 当然上来的问题就是前端的问题&#xff0c;这个框首先他们用的是富文本&#xff0c;富文本传到后台的结果是前端脚本&#xff0c;带着h5的标签&#xff0c;后面改成了这个&#xff0c;当时这个东西其实和后…

express操作mysql数据库的方法总结

作为前端&#xff0c;我们无需去考虑数据库的问题&#xff0c;业务场景需要的话&#xff0c;我们可以mock数据&#xff0c;满足暂时的联调场景。但是对于数据库&#xff0c;我们前端可以不用&#xff0c;却不能不了解不懂。所以这篇文章整理下&#xff0c;nodejs框架express中怎…

IDEA+Docker远程一键部署SpringBoot项目

一.引语 本文将学习使用IDEADocker远程一键部署SpringBoot项目&#xff0c;对比上传jar包到服务器&#xff0c;再通过java指令运行项目&#xff0c;极大程度的提高了项目部署效率。可谓不用不知道&#xff0c;一用再也停不下来~ 为了后续学习方便&#xff0c;需要提前进行如下…

Firebase集成

目标&#xff1a; 1&#xff09;集成Firebase; 2) 集成Firebase Crashlytics&#xff0c;监控APP崩溃 海外APP开发需要科学上网。 一、Firebase是什么&#xff1f; Firebase 是一个应用开发平台&#xff0c;可帮助您构建和拓展用户喜爱的应用和游戏。提供了应用的构建、发布…

Nuxt3 实战 (三):使用 release-it 自动管理版本号和生成 CHANGELOG

release-it 能做什么&#xff1f; 增加版本号并提交 Git生成变更日志&#xff08;Changelog&#xff09;并提交到 Git创建 Git 标签并推送到远程仓库发布到 npm 等软件仓库在 GitHub、GitLab 等平台创建发行版 前置知识 在看这篇文章之前&#xff0c;我们有必要了解一下 Sem…

Few-Shot目标检测数据集 | Few-Shot目标检测数据集_已经整理成MS-COCO数据格式_含60000+张图_可直接用于目标检测算法训练

项目应用场景 面向 Few-Shot 目标检测场景&#xff0c;项目提供 6000 张图&#xff0c;已经整理成 MS-COCO 数据格式&#xff0c;可用于 Few-Shot 目标检测的训练数据集&#xff0c;或作为 Few-Shot 目标检测数据集的补充。 数据集展示 数据集下载 > 具体参见项目 README.m…

人工智能_大模型023_AssistantsAPI_01_OpenAI助手的创建_API的调用_生命周期管理_对话服务创建---人工智能工作笔记0159

先来说一下一些问题: 尽量不要微调,很麻烦,而且效果需要自己不断的去测试. 如果文档中有图表,大量的图片去分析就不合适了. 是否用RAG搜索,这个可以这样来弄,首先去es库去搜能直接找到答案可以就不用去RAG检索了,也可以设置一个分,如果低于60分,那么就可以去进行RAG检索 微…

Teachable Machine模型之TensorFlow使用篇

前言: 使用在teachable machine训练的h5格式模型 tensorflow使用篇 1. 使用teachable machine训练模型 地址: 传送门, 需要梯子翻一下 训练后, 导出的时候可以选择三种类型 导出模型文件 converted_keras.zip (py版) 解压后得到 2. py项目中使用模型 根据你当时使用tea…