使用新版FLIR (FLIR_ADAS_v2) 数据集创建yolo格式数据集(目标检测)

FLIR在2022.1.19发布了新版的FLIR_ADAS_v2,有着更多的类别和数量更丰富的图像。数据集同步注释热图像和无注释RGB图像供参考。本文章主要介绍如何使用FLIR_ADAS_v2中的rgb图像和thermal图像来制作yolo格式数据集。

1.官方数据集下载:FLIR_ADAS_v2数据集下载

  • 官方下载链接​​​​​

2. 将单个json文件转换为多个xml文件

需要注意的是代码里面的文件位置是当时把官方文件下载的 COCO 数据集所在目录,读取的json 文件所在位置是看需要用的是rgb图像或者thermal图像的train或者val。

另外生成的xml文件存放位置一定要和json文件相对应,也就是说新建的文件夹里一定包含data文件夹,只这样才能生成xml文件,不然会报错"filenotfounderror: [errno 2] no such file or directory: '..."。即保存文件里面的data文件夹一定要新建好,再运行代码。

python代码如下:

# translate coco_json to xml
import os
import time
import json
import pandas as pd
from tqdm import tqdm
from pycocotools.coco import COCOdef trans_id(category_id):names = []namesid = []for i in range(0, len(cats)):names.append(cats[i]['name'])namesid.append(cats[i]['id'])# print('id:{1}\t {0}'.format(names[i], namesid[i]))index = namesid.index(category_id)return indexroot = r'G:/红外数据集-FLIR2/FLIR_ADAS_v2/images_thermal_train'  # 你下载的 COCO 数据集所在目录
dataType = '2017'
anno = r'G:/红外数据集-FLIR2/FLIR_ADAS_v2/images_thermal_train/coco.json'  # annotation json 文件所在位置
xml_dir = r'G:/红外数据集-FLIR2/FLIR2_yolo_xml/images_thermal_train'  # 导出的xml文件所在的位置coco = COCO(anno)  # 读文件
cats = coco.loadCats(coco.getCatIds())  # 这里loadCats就是coco提供的接口,获取类别# Create anno dir
dttm = time.strftime("%Y%m%d%H%M%S", time.localtime())
# if os.path.exists(xml_dir):
#     os.rename(xml_dir, xml_dir + dttm)
# os.mkdir(xml_dir)with open(anno, 'r') as load_f:f = json.load(load_f)imgs = f['images']  # json文件的img_id和图片对应关系 imgs列表表示多少张图cat = f['categories']
df_cate = pd.DataFrame(f['categories'])  # json中的类别
df_cate_sort = df_cate.sort_values(["id"], ascending=True)  # 按照类别id排序
categories = list(df_cate_sort['name'])  # 获取所有类别名称
print('categories = ', categories)
df_anno = pd.DataFrame(f['annotations'])  # json中的annotationfor i in tqdm(range(len(imgs))):  # 大循环是images所有图片xml_content = []file_name = imgs[i]['file_name']  # 通过img_id找到图片的信息height = imgs[i]['height']img_id = imgs[i]['id']width = imgs[i]['width']# xml文件添加属性xml_content.append("<annotation>")xml_content.append("	<folder>VOC2007</folder>")xml_content.append("	<filename>" + file_name.split('/')[1].split('.')[0] + '.jpg' + "</filename>")xml_content.append("	<size>")xml_content.append("		<width>" + str(width) + "</width>")xml_content.append("		<height>" + str(height) + "</height>")xml_content.append("	</size>")xml_content.append("	<segmented>0</segmented>")# 通过img_id找到annotationsannos = df_anno[df_anno["image_id"].isin([img_id])]  # (2,8)表示一张图有两个框for index, row in annos.iterrows():  # 一张图的所有annotation信息bbox = row["bbox"]category_id = row["category_id"]# cate_name = categories[trans_id(category_id)]cate_name = cat[category_id - 1]['name']# add new objectxml_content.append("<object>")xml_content.append("<name>" + cate_name + "</name>")xml_content.append("<pose>Unspecified</pose>")xml_content.append("<truncated>0</truncated>")xml_content.append("<difficult>0</difficult>")xml_content.append("<bndbox>")xml_content.append("<xmin>" + str(int(bbox[0])) + "</xmin>")xml_content.append("<ymin>" + str(int(bbox[1])) + "</ymin>")xml_content.append("<xmax>" + str(int(bbox[0] + bbox[2])) + "</xmax>")xml_content.append("<ymax>" + str(int(bbox[1] + bbox[3])) + "</ymax>")xml_content.append("</bndbox>")xml_content.append("</object>")xml_content.append("</annotation>")x = xml_contentxml_content = [x[i] for i in range(0, len(x)) if x[i] != "\n"]### list存入文件xml_path = os.path.join(xml_dir, file_name.replace('.jpg', '.xml'))with open(xml_path, 'w+', encoding="utf8") as f:f.write('\n'.join(xml_content))xml_content[:] = []

成功运行!

3. 将多个xml文件转换为YOLO所需的txt文件

里面的类别看Readme文件,其中thermal类别比rgb类别多了dog和deer,生成txt注意区分

不过为了后续类别对应,我统一都写成thermal的类别了

# xml_to_yolo_txt.py
# 此代码和VOC_KITTI文件夹同目录
import os
import xml.etree.ElementTree as ET
# 这里的类名为我们xml里面的类名,顺序a按照Readme文件,或者也可以不考虑顺序
# 其中thermal类别比rgb类别多了dog和deer,生成txt注意区分
class_names = ['person','bike','car','motor', 'bus', 'train','truck','light','hydrant', 'sign','dog','deer','skateboard','stroller', 'scooter', 'other vehicle']
# class_names = ['person','bike','car','motor', 'bus', 'train','truck','light','hydrant', 'sign',
#                'skateboard','stroller','scooter','other vehicle' ]
# xml文件路径
path = 'G:/红外数据集-FLIR2/FLIR2_yolo_xml/images_rgb_train/data/'
# 转换一个xml文件为txt
def single_xml_to_txt(xml_file):tree = ET.parse(os.path.join(path, xml_file))root = tree.getroot()# 保存的txt文件路径txt_file = os.path.join('G:/红外数据集-FLIR2/FLIR2_yolo/images_rgb_train/data/', xml_file.split('.')[0]+'.txt')with open(txt_file, 'w') as txt_file:for member in root.findall('object'):#filename = root.find('filename').textpicture_width = int(root.find('size')[0].text)picture_height = int(root.find('size')[1].text)class_name = member[0].text# 类名对应的indexclass_num = class_names.index(class_name)box_x_min = int(member[4][0].text) # 左上角横坐标box_y_min = int(member[4][1].text) # 左上角纵坐标box_x_max = int(member[4][2].text) # 右下角横坐标box_y_max = int(member[4][3].text) # 右下角纵坐标# 转成相对位置和宽高x_center = float(box_x_min + box_x_max) / (2 * picture_width)y_center = float(box_y_min + box_y_max) / (2 * picture_height)width = float(box_x_max - box_x_min) /  picture_widthheight = float(box_y_max - box_y_min) /  picture_height# print(class_num, x_center, y_center, width, height)txt_file.write(str(class_num) + ' ' + str(x_center) + ' ' + str(y_center) + ' ' + str(width) + ' ' + str(height) + '\n')
# 转换文件夹下的所有xml文件为txt
def dir_xml_to_txt(path):files = os.listdir(path)for xml_file in files:single_xml_to_txt(xml_file)
dir_xml_to_txt(path)

4,整理成yolo的txt格式

一般yolo的格式如下:

因此将上面生成的文件分别整理成图片的格式,然后仿照./data/文件夹下的yaml文件,自己写一个数据yaml:此时的class类别必须和上面生成txt的类别顺序一致。

train: G:/yolo_FLIR2/FLIR2_yolo_thermal/images/train
val: G:/yolo_FLIR2/FLIR2_yolo_thermal/images/val
test: G:/yolo_FLIR2/FLIR2_yolo_thermal/images/test# Classes
names:0: person1: bike 2: car3: motor4: bus5: train6: truck7: light8: hydrant9: sign10: dog11: deer12: skateboard13: stroller 14: scooter 15: other vehicle

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/801530.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

win11 连接海康摄像头 ONVif协议

目录 Win 11 通过脚本打开自带的IE浏览器访问海康摄像头 海康摄像头设置支持onvif协议 安装onvif协议 onvif协议示例代码 Win 11 通过脚本打开自带的IE浏览器访问海康摄像头 第一步、桌面右键新建一个 txt 的文档 第二步、打开文档并且复制粘贴下面代码 CreateObject(&…

OpenCV单通道图像按像素成倍比例放大(无高斯平滑处理)

OpenCV中的resize函数可以对图像做任意比例的放大(/缩小)处理&#xff0c;该处理过程会对图像做高斯模糊化以保证图像在进行放大&#xff08;/缩小&#xff09;后尽可能保留源图像所展现的具体内容&#xff08;消除固定频率插值/采样带来的香农采样信息损失&#xff09;&#x…

【深度学习】环境搭建ubuntu22.04

清华官网的conda源 https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/ 安装torch conda install pytorch torchvision torchaudio pytorch-cuda12.1 -c pytorch -c nvidia 2.2.2 conda install 指引看这里&#xff1a; ref:https://docs.nvidia.com/cuda/cuda-installatio…

Leetcode面试经典150_Q14最长公共前缀

题目&#xff1a; 编写一个函数来查找字符串数组中的最长公共前缀。如果不存在公共前缀&#xff0c;返回空字符串 ""。 思路A&#xff1a;横向/纵向扫描 Python&#xff1a; class Solution:def longestCommonPrefix(self, strs: List[str]) -> str:s "…

微软edge浏览器上网、下载速度慢,如何解决??

&#x1f3c6;本文收录于「Bug调优」专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收藏&&…

【Spring】一问详解什么是Spring IoC和DI

目录 一、IoC & DI入门1.1、Spring1.1.1、什么是容器1.1.2、什么是IoC 1.2、IoC介绍1.2.1、传统程序开发1.2.2、问题分析1.2.3、问题解决1.2.4、 IoC优势 1.3、Bean的作用域1.4、DI介绍 二、IoC详解2.1、Bean的存储2.1.1、类注解的使用2.1.2、获取bean对象的其他方式2.1.3、…

【Linux 命令】内核、驱动调试手段总结

文章目录 1. printk2. strace3. Itrace4. ptrace5. ftrace6. 动态打印7. perf8. devmem9. demsg参考&#xff1a; 1. printk **printk()**是 Linux 内核中最广为人知的函数之一。它是我们打印消息的标准工具&#xff0c;通常也是追踪和调试的最基本方法。 虽然 printk() 是基…

element问题总结之el-table使用fixed中 header换行后固定行错位问题/固定列下陷问题

固定列下陷问题 效果图问题描述解决方案1、为table添加ref2、调用节点重新自适应方法doLayout3、在操作表头的时候触发的函数header-dragend绑定doLayout方法4、成功解决 效果图 问题描述 在使用el-table的fixed中&#xff0c;发现如果header拖拽文本折行的时候会出现下陷 解…

【大数据】大数据概论与Hadoop

目录 1.大数据概述 1.1.大数据的概念 1.2.大数据的应用场景 1.3.大数据的关键技术 1.4.大数据的计算模式 1.5.大数据和云计算的关系 1.6.物联网 2.Hadoop 2.1.核心架构 2.2.版本演进 2.3.生态圈的全量结构 1.大数据概述 1.1.大数据的概念 大数据即字面意思&#x…

SRIO学习(3)使用SRIO IP核进行设计

文章目录 前言一、设计框图二、模块介绍三、上板验证 前言 本文将通过使用SRIO IP核实现数据通信&#xff0c;重点在于打通数据链路&#xff0c;具体的协议内容设计并非重点&#xff0c;打通了链路大家自己根据设计需求来即可。 一、设计框图 看了前面高速接口的一些设计&am…

探索算力(云计算、人工智能、边缘计算等):数字时代的引擎

引言 在数字时代&#xff0c;算力是一种至关重要的资源&#xff0c;它是推动科技创新、驱动经济发展的关键引擎之一。简而言之&#xff0c;算力即计算能力&#xff0c;是计算机系统在单位时间内完成的计算任务数量或计算复杂度的度量。随着科技的不断发展和应用范围的不断扩大…

流式密集视频字幕

流式密集视频字幕 摘要1 IntroductionRelated Work3 Streaming Dense Video Captioning Streaming Dense Video Captioning 摘要 对于一个密集视频字幕生成模型&#xff0c;预测在视频中时间上定位的字幕&#xff0c;理想情况下应该能够处理长的输入视频&#xff0c;预测丰富、…

C语言 | Leetcoce C语言题解之第18题四数之和

题目&#xff1a; 题解&#xff1a; int comp(const void* a, const void* b) {return *(int*)a - *(int*)b; }int** fourSum(int* nums, int numsSize, int target, int* returnSize, int** returnColumnSizes) {int** quadruplets malloc(sizeof(int*) * 1001);*returnSize…

企业版ChatGPT用户激增至60万;百度文心一言推出个性化声音定制功能

&#x1f989; AI新闻 &#x1f680; 企业版ChatGPT用户激增至60万 摘要&#xff1a;OpenAI首席运营官Brad Lightcap在接受采访时透露&#xff0c;企业版ChatGPT的注册用户已超60万&#xff0c;相较2024年1月的15万用户&#xff0c;短短三个月内增长了300%。这一版本自2023年…

C++11新特性(2) ——动态内存和智能指针从入门到入坑

动态内存与智能指针 动态内存的使用十分容易出现问题&#xff08;内存泄漏/非法内存&#xff09;&#xff0c;而智能指针能更安全、容易的使用动态内存&#xff0c;因为他负责自动释放所指向的对象&#xff0c;并且在出现异常时&#xff0c;也会自动释放。 两种智能指针&#…

《springcloud alibaba》 四 seata安装以及使用

目录 准备调整db配置准备创建数据库 seata配置nacos配置confi.txt下载向nacos推送配置的脚本 启动seata新建项目order-seata项目 订单项目数据库脚本pom.xmlapplication.yml启动类实体类dao类service类controller类feign类mapper类 stock-seata 库存项目数据库脚本pom.xmlappli…

STM32学习和实践笔记(5):时钟树

STM32一共有4个时钟源。外部时钟高低速各一个&#xff0c;内部时钟高低速各一个。 外部高速时钟是&#xff1a;4-16MHZ的HSE OSC。HS表示高速high speed. E表示外部的external。开发板该处安装的8M晶振。 外部低速时钟是&#xff1a;32.768KHz的LSI OSC。LS表示高速low speed…

为说阿拉伯语的国家进行游戏本地化

阿拉伯语是由超过4亿人使用的语言&#xff0c;并且是二十多个国家的官方语言。进入这些国家的市场并非易事——虽然他们共享一种通用语言&#xff0c;但每个国家都有自己独特的文化&#xff0c;有自己的禁忌和对审查的处理方式。这就是为什么视频游戏公司长期以来都远离阿拉伯语…

Qt QML的插件(Qt Quick 2 Extension Plugin)方法

Qt Quick的插件方法 序言环境前置注意概念——Qt Quick插件的相关知识插件里的qml文件模块名的相关知识模块名本身注意事项模块名版本注意事项 以示例来说明创建插件qmltypes的生成qmltypes的可能性失效 插件的编码注意1、插件模块版本控制2、pro里的注意 调用插件插件信息输入…

华为手机 鸿蒙系统 或者安卓系统的百度网盘下载的文件保存在手机什么位置如何查看

华为手机 鸿蒙系统 或者安卓系统的百度网盘下载的文件保存在手机什么位置如何查看 连接电脑后一般在这里位置 计算机\Mate 20 Pro (UD)\内部存储\Download\BaiduNetdisk 也就是用usb&#xff08;数据线&#xff0c;不是充电线&#xff0c;要四心的 )连接手机后&#xff0c;打…