20240325-1-HMM

HMM

直观理解


马尔可夫链(英语:Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain,缩写为DTMC),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。
隐马尔可夫模型包含5个要素:初始概率分布,状态转移概率分布,观测概率分布,所有可能状态的集合,所有可能观测的集合
隐马尔可夫模型HMM是结构最简单的动态贝叶斯网络,是有向图模型

核心公式


  1. 依据马尔可夫性,所有变量的联合概率分布为:

在这里插入图片描述

注意要点


  • 统计语言模型[Statistical Language Model]

是自然语言处理的重要技术,对于要处理的一段文本,我们可以看做是离散的时间序列,并且具有上下文依存关系;该模型可以应用在语音识别和机器翻译等领域,其模型表达式如下:
在这里插入图片描述
如果只考虑前n-1个单词的影响,称为n元语法(n-grams),那么语言模型变为:
在这里插入图片描述
注意:很多时候我们无法考量太久以前的词,一是因为距离太远的词与当前词关系不大,二是因为距离越长模型参数越多,并且成指数级增长,因此4元以上几乎没人使用。当n=2的时候,就是只考虑前一个单词的一阶马尔科夫链模型,大家都知道在NLP任务中,上下文信息相关性的跨度可能非常大,马尔科夫模型无法处理这样的问题,需要新的模型可以解决这种长程依赖性(Long Distance Dependency)。
这里可以回忆一下RNN/LSTM网络,通过隐状态传递信息,可以有效解决长程依赖问题,但当处理很长的序列的时候,它们仍然面临着挑战,即梯度消失。

  • 两点马尔可夫性质:[可以理解为无记忆性;留意:NLP问题会涉及哦]

(1). 下一个状态的概率分布只与当前状态有关
在这里插入图片描述

(2). 下一个时刻的观测只与其相对应的状态有关
在这里插入图片描述

  • 最大熵马尔可夫模型为什么会产生标注偏置问题?如何解决?

  • HMM为什么是生成模型

因为HMM直接对联合概率分布建模;相对而言,条件随机场CRF直接对条件概率建模,所以是判别模型。

  • HMM在处理NLP词性标注和实体识别任务中的局限性

在序列标注问题中,隐状态(标注)不仅和单个观测状态相关,还 和观察序列的长度、上下文等信息相关。例如词性标注问题中,一个词被标注为 动词还是名词,不仅与它本身以及它前一个词的标注有关,还依赖于上下文中的 其他词

  • 隐马尔可夫模型包括概率计算问题、预测问题、学习问题三个基本问题

(1)概率计算问题:已知模型的所有参数,计算观测序列Y出现的概率,可 使用前向和后向算法求解。
(2)预测问题:已知模型所有参数和观测序列Y,计算最可能的隐状态序 列X,可使用经典的动态规划算法——维特比算法来求解最可能的状态序列。
(3)学习问题:已知观测序列Y,求解使得该观测序列概率最大的模型参 数,包括隐状态序列、隐状态之间的转移概率分布以及从隐状态到观测状态的概 率分布,可使用Baum-Welch算法进行参数的学习,Baum-Welch算法是最大期望算 法的一个特例。

  • 浅谈最大熵模型

最大熵这个词听起来很玄妙,其实就是保留全部的不确定性,将风险降到最小。
应用在词性标注,句法分析,机器翻译等NLP任务中。
在这里插入图片描述

面试真题


  1. 如何对中文分词问题用HMM模型进行建模的训练?
  2. 最大熵HMM模型为什么会产生标注偏置问题,如何解决?

参考

1.隐马尔可夫链定义参考维基百科
2.统计学 李航
3.数学之美
4.百面机器学习

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/800799.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++进阶】用哈希实现unordered_set和unordered_map的模拟

🪐🪐🪐欢迎来到程序员餐厅💫💫💫 主厨:邪王真眼 主厨的主页:Chef‘s blog 所属专栏:c大冒险 总有光环在陨落,总有新星在闪烁 前言: 之前我…

【C++ STL算法】sort 排序

文章目录 【 1. 基本原理 】【 2. sort 的应用 】实例 - sort 函数实现 升序排序和降序排序 函数名用法sort (first, last)基于 快速排序,对容器或普通数组中 [ first, last ) 范围内的元素进行排序,默认进行升序排序(从小到大)。…

2024年面试AI编译器岗经验总结

面试经历: 面试中必备的知识: 1.用C++实现一个卷积 (图解)一步一步使用CPP实现深度学习中的卷积 - GiantPandaCVGiantPandaCVhttp://giantpandacv.com/academic/%E7%AE%97%E6%B3%95%E7%A7%91%E6%99%AE/%E5%B0%BD%E8%A7%88%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E…

git 常用命令和使用方法

作者简介: 一个平凡而乐于分享的小比特,中南民族大学通信工程专业研究生在读,研究方向无线联邦学习 擅长领域:驱动开发,嵌入式软件开发,BSP开发 作者主页:一个平凡而乐于分享的小比特的个人主页…

2014最新AIGC创作系统ChatGPT网站源码+AI绘画网站源码+GPT4-All联网搜索模型

一、文章前言 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,那么如何搭建部署AI创作ChatGPT?小编这里写一个详细图文教程吧。已支持…

[C++][算法基础]字符串哈希(哈希表)

给定一个长度为 n 的字符串,再给定 m 个询问,每个询问包含四个整数 l1,r1,l2,r2,请你判断 [l1,r1] 和 [l2,r2] 这两个区间所包含的字符串子串是否完全相同。 字符串中只包含大小写英文字母和数字。 输入格式 第一行包含整数 n 和 m&#x…

HarmonyOS 应用开发-边缓存边播放案例

介绍 OhosVideoCache是一个支持边播放边缓存的库,只需要将音视频的url传递给OhosVideoCache处理之后再设置给播放器, OhosVideoCache就可以一边下载音视频数据并保存在本地,一边读取本地缓存返回给播放器,使用者无需进行其他操作…

Android Telephony框架

目录 一、简介二、应用层(Application)三、框架层(Framework)四、本地 RIL 层(RIL)五、驱动层(Modem)六、整体框架 一、简介 无论手机发展到如何智能的程度,最关键和重要的功能仍然是通讯,具体来说就是打电话、发短信、上网功能的使用。而整个 Android …

Centos 7 安装通过yum安装google浏览器

在CentOS 7上使用yum安装Google Chrome浏览器稍微复杂一些,因为Chrome并不直接包含在默认的Yum仓库中。按照以下步骤来操作: 1、添加Google Chrome仓库 首先,您需要手动添加Google Chrome的Yum仓库。打开终端,并使用文本编辑器&a…

MySQL高可用搭建方案MHA

MHA架构介绍 MHA是Master High Availability的缩写,它是目前MySQL高可用方面的一个相对成熟的解决方案,其核心是使用perl语言编写的一组脚本,是一套优秀的作为MySQL高可用性环境下故障切换和主从提升的高可用软件。在MySQL故障切换过程中&am…

使用 AI 生成正则表达式,告别正则烦恼

如果你有处理正则表达式的需求,那么这个网站(autoregex.xyz)一定要收藏好。 可以根据文字描述生成正则表达式。 默认是从文字到正则,不用选择。 输入框中输入描述,点击 ”GO“ 按钮。 等待一会儿,即可生…

get请求搜索功能爬虫

<!--爬虫仅支持1.8版本的jdk--> <!-- 爬虫需要的依赖--> <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactId>httpclient</artifactId> <version>4.5.2</version> </dependency>…

mos管开关出现尖峰的原理? mos管开关的时候cs会出现尖峰,请问这是什么原因?

MOS管在开关过程中出现尖峰现象&#xff0c;通常是由于电路中的寄生参数和快速电压变化引起的。以下是一些导致尖峰出现的主要原因和原理&#xff1a; 寄生电容 在MOS管的源极&#xff08;S&#xff09;和漏极&#xff08;D&#xff09;之间存在寄生电容&#xff0c;这个电容在…

面试总结------2024/04/04---项目

1.面试官提问&#xff1a;你说你在项目中使用springsecurity jwt 实现了登录功能&#xff0c;能简单讲一下怎么实现的吗&#xff1f; 2.使用RabbitMQ实现订单超时取消功能 redis实现的劣势 订单状态定义 首先&#xff0c;我们需要定义订单的不同状态。在这个示例中&#xf…

【Java】单例模式

单例模式是面试中常考的设计模式之一 在面试中&#xff0c;面试官常常会要求写出两种类型的单例模式并解释原理 本文中&#xff0c;将从0到1的介绍单例模式究竟是什么 文章目录 ✍一、什么是设计模式&#xff1f;✍二、单例模式是什么&#xff1f;✍三、单例模式的类型**1.饿汉…

线上研讨会 | 新一代数字化技术赋能机器人及智能产线行业高质量发展

随着智能制造的快速推进&#xff0c;制造业转型升级到了关键阶段。越来越多的企业以数字化技术搭配智能机器人及智慧产线&#xff0c;主动实现数字化转型。达索系统3D体验平台是实现企业数字化转型的新一代数智化平台&#xff0c;基于型、数字驱动、数字化连续技术&#xff0c;…

【深度学习基础】

打基础日常记录 CNN基础知识1. 感知机2. DNN 深度神经网络&#xff08;全连接神经网络&#xff09;DNN 与感知机的区别DNN特点&#xff0c;全连接神经网络DNN前向传播和反向传播 3. CNN结构【提取特征分类】4. CNN应用于文本 RNN基础1. RNN的本质 词向量模型word2Vec1. 自然语言…

Selenium与Metamask钱包及DApp交互及验证码破解汇总

1.LavaMoat报错: selenium.common.exceptions.WebDriverException: Message: unknown error: Runtime.callFunctionOn threw exception: Error: LavaMoat...`报错原因: 根本原因是Metamask为了用户钱包安全,而将LavaMoat 设置为了全局不可用。 报错解析文章链接: https:/…

城市定量分析学习资料大数据 gis 空间句法 Python

城市定量分析学习资料大数据 gis 空间句法 Python

Ubuntu 20.04.06 PCL C++学习记录(十六)

[TOC]PCL中点云分割模块的学习 学习背景 参考书籍&#xff1a;《点云库PCL从入门到精通》以及官方代码PCL官方代码链接,&#xff0c;PCL版本为1.10.0&#xff0c;CMake版本为3.16 学习内容 用一组点云数据做简单的平面的分割 源代码及所用函数 源代码 #include<iostr…