分表?分库?分库分表?实践详谈 ShardingSphere-JDBC

如果有不是很了解ShardingSphere的可以先看一下这个文章:

《ShardingSphere JDBC?Sharding JDBC?》基本小白脱坑问题

阿丹:

        在很多开发场景下面,很多的技术难题都是出自于,大数据量级或者并发的场景下面的。这里就出现了我们要解决的。本文章重点讨论一下在java的spirng开发场景下,有哪些业务场景可以让我们使用下面的三个场景:
        分表?分库?分库分表?

        这个文章的根本就是能让大家可以自己上手使用,以及清楚分表?分库?分库分表?这三种业务场景,来帮助大家可以使用这样的技术来解决业务的难题。

在开始前先给分表?分库?分库分表?这三个业务场景先搞清楚在说。

分库分表:

分库和分表有两种形式,垂直和水平

分库的两种模式:
 

分库:

垂直分库:

也就是说,垂直的将各个领域分开成表。

将不同的垂直的领域来进行分库

水平分库:

将单个性质的数据库,平行拆分多个数据库,对于数据库的命名使用附带逻辑的命名来解决这个问题。

分表:
 

垂直分表:

也就是按照业务维度来将数据进行拆分,将不常用的信息放到一个扩展表中去。

水平分表:

水平也就是将用户做一个水平的分布,展现出来就是user_table_--name这样的方式来展现

什么时候这样做呢?

从两个方向去考虑

1、数据库连接

2、单表数据量

当数据库连接不够的时候,肯定是使用分库的方式来完成这个操作

当单表的数据影响到数据操作的时候,使用分表来完成这个操作。具体多少以上要根据单条数据量级,以及数据内核来计算。

那么什么时候来使用分库分表?

在高并发的写入或者查询的场景下面

以及在数据量非常巨大的情况下面我们就可以开始考虑分库分表来进行操作了。

那分库分表使用什么技术栈呢?

数据库分库分表框架 ShardingSphere

官方操作文档:

ShardingSphere-JDBC :: ShardingSphere

Sharding-JDBC 是一款开源的Java框架,主要用于在数据库层面解决大规模数据存储下的水平扩展问题,即数据分片(sharding)。它通过在应用程序的JDBC层进行增强,使得开发者能够在不改变原有SQL操作习惯的前提下,透明地实现对数据库的分库与分表操作。

Sharding-JDBC的主要特点包括:

  1. 轻量级客户端模式:无需额外部署服务器端中间件,直接作为JDBC驱动集成到应用中,无缝对接各类 ORM 框架及 JDBC 使用场景。

  2. 透明化分片:通过解析SQL语句以及应用自定义的分片规则,自动路由到正确的数据库和表,对于应用层来说,就像是在操作一个完整的逻辑数据库。

  3. 功能全面:支持多数据源、读写分离、分库分表、数据一致性保证(如分布式事务)、灵活的分片策略等,并且提供了丰富的分片算法供用户选择或自定义。

  4. 高性能:由于其工作原理是在客户端完成SQL解析和路由,避免了网络传输开销,理论上性能更优。

  5. 兼容性良好:完全兼容JDBC和大部分ORM框架,可以很容易地整合到现有的基于Java的企业级应用中。

分片键

用于将数据库(表)水平拆分的数据库字段。

分库分表中的分片键(Sharding Key)是一个关键决策,它直接影响了分库分表的性能和可扩展性。以下是一些选择分片键的关键因素:

  1. 访问频率:选择分片键应考虑数据的访问频率。将经常访问的数据放在同一个分片上,可以提高查询性能和降低跨分片查询的开销。
  2. 数据均匀性:分片键应该保证数据的均匀分布在各个分片上,避免出现热点数据集中在某个分片上的情况。
  3. 数据不可变:一旦选择了分片键,它应该是不可变的,不能随着业务的变化而频繁修改。

分片键(Sharding Key)是数据库分片技术中非常关键的概念。在分布式数据库系统或者数据仓库中,当单个数据库实例无法容纳全部数据,或者为了提高并发处理能力和数据访问效率时,往往会采取水平分区的方式,也就是数据分片(Sharding),将数据分布到多个物理节点上。

分片键是指在进行数据分片时,用来确定数据记录应被分配到哪个特定分片上的字段或属性。它是数据分区的依据,根据分片键的值,通过预定义的分片策略(例如哈希、范围、列表等)计算出数据应该存储在哪个分片上。换句话说,分片键的选择直接关系到数据在各个分片之间的分布均衡性、查询性能以及业务需求的满足程度。

例如,如果我们有一个订单表orders,并且按年份进行分片,那么o_orderdate字段就可以作为分片键,每年的订单数据都会被存储在一个特定的数据库分片中。在实际应用中,分片键的选择应当尽量考虑以下因素:

  • 查询模式:选择那些频繁出现在查询条件中且能均匀分布数据的字段。
  • 数据增长趋势:确保分片键能够适应未来数据的增长,避免热点分片。
  • 分区粒度:粒度过大可能造成单个分片过大,粒度过小则可能导致分片过多,影响管理效率和查询效率。

总之,分片键是整个分片机制的核心,合适的分片键能够有效提升分布式数据库系统的可扩展性和可用性。

Sharding-JDBC引入项目

需求:
我要使用ShardingSphere JDBC完成分库,库名为XXXX_2024往后就是按照年份来,每年一个日志的库,Id为雪花算法生成,

分表的原理为XXXXX_0402像这样在表后面追加时间来完成比如今天是4月7号就是在表后面追加0407

引入依赖

ShardingSphere-JDBC配置application.yml文件文件

# application.yml
spring:shardingsphere:datasource:names: ds0 # 数据源名称,可添加更多数据源以支持读写分离ds0:type: com.zaxxer.hikari.HikariDataSourcedriver-class-name: com.mysql.jdbc.Driverurl: jdbc:mysql://localhost:3306/chicklogin_record_2024?serverTimezone=UTCusername: rootpassword: passwordsharding:tables:chick_record: # 表名逻辑名称actual-data-nodes: chicklogin_record_$->{2024..2099}.chick_record_$->{0101..1231} # 分库分表策略,假设从2024年开始,每年一个库,每天一个表table-strategy:standard:sharding-column: record_date # 分表依据的字段名precise-algorithm-class-name: com.example.CustomDateTableShardingAlgorithm # 自定义分表算法类,处理日期转换为表后缀key-generator:column: id # 主键列名type: SNOWFLAKE # 使用雪花算法作为主键生成器props:worker-id: 1 # 雪花算法workerId配置,根据实际情况设定

在配置文件中的定义分片规则!!注意:我们在自定义的时候需要给需要分表的一类表,在配置文件中说明如何分配

# application.yml
spring:shardingsphere:# ...其他配置...sharding:tables:chick_record: # 第一个表配置actual-data-nodes: chicklogin_record_$->{2024..2099}.chick_record_$->{0101..1231}table-strategy:standard:sharding-column: record_dateprecise-algorithm-class-name: com.example.CustomDateTableShardingAlgorithmorder_info: # 第二个表配置actual-data-nodes: chicklogin_record_$->{2024..2099}.order_info_$->{0101..1231}table-strategy:standard:sharding-column: order_dateprecise-algorithm-class-name: com.example.CustomDateTableShardingAlgorithm# ...其他配置...

配置雪花算法ID生成器

如果使用的是内建的雪花算法主键生成器,通常无需额外配置。但如果需要自定义,也可以实现相关接口。这里默认使用内置的SnowflakeKeyGenerator。

在实体类中使用雪花ID注解

import org.apache.shardingsphere.infra.datanode.DataNode;
import org.springframework.data.annotation.Id;
import org.springframework.data.relational.core.mapping.Table;@Table(name = "chick_record")
public class ChickRecordEntity {@Idprivate Long id; // 由雪花算法自动生成// 其他属性和getter/setter省略
}

pom依赖

 <!-- Spring Boot Starter Data JPA 或 Spring Boot Starter MyBatis等基础数据库依赖 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-jpa</artifactId> <!-- 或 spring-boot-starter-mybatis 等 --></dependency><!-- ShardingSphere JDBC核心依赖 --><dependency><groupId>org.apache.shardingsphere</groupId><artifactId>shardingsphere-jdbc-core</artifactId><!-- 检查ShardingSphere官网或Maven仓库获取最新的稳定版本号 --><version>{latest_version}</version></dependency><!-- 如果你的项目中使用了MySQL数据库驱动 --><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><!-- 根据实际情况填写版本号 --><version>{mysql_driver_version}</version><!-- 若使用Spring Boot,通常可以作为provided或者runtime scope --><scope>runtime</scope></dependency>

 

具体的增删改查还使用MyBatis Plus或其他持久层框架集成-就OK了
这个就不在这个文章中在教大家了,大家可以自行去搜索一下。

注意!!!
 

Apache ShardingSphere-JDBC 提供了一种称为“透明化分片”的能力,通过其内置的优化机制,它可以尽可能地减少跨分片的SQL查询带来的性能损失。为了提高查询效率并避免多次查询不同分片表的情况发生,ShardingSphere-JDBC提供了以下几种机制:

  1. 分片路由优化

    • 对于简单的分片SQL,ShardingSphere-JDBC会根据分片策略智能路由至正确的数据源和表,确保一次查询仅访问必要的分片。
  2. 广播表

    • 广播表是指在所有分片库中完全复制的一张表,用于存储全局唯一或者不需要分片的数据。查询广播表时,ShardingSphere-JDBC会在所有数据源上执行相同的查询,并将结果合并返回。
  3. 笛卡尔积连接消除

    • 当SQL中有多个分片表参与JOIN查询时,默认情况下ShardingSphere-JDBC会尽量避免产生不必要的笛卡尔积,而是通过分析查询条件,找出最优的连接顺序和范围,减少分片间的数据交互。
  4. 多表关联查询优化

    • 对于涉及多个分片表的复杂查询,如果满足特定条件(例如join条件包含了分片键),ShardingSphere-JDBC能够进行优化,从而减少跨分片查询次数。
  5. 分页优化

    • 对于带有LIMIT和OFFSET的分页查询,ShardingSphere-JDBC会对分页参数进行重置,以保证在分片环境下也能获取正确的分页结果,同时降低无效数据的传输。
  6. Hint机制

    • 用户可以通过SQL Hint直接指定查询的目标数据源或表,强制指定路由规则,这对于某些特殊场景下避免全表扫描或跨分片查询非常有用。

通过以上特性,ShardingSphere-JDBC能够帮助开发者在处理分片场景下的SQL查询时,有效提升查询效率并减少对多个表的重复查询。然而,值得注意的是,针对过于复杂的SQL语句和查询场景,仍需结合业务特点和数据分布进行合理的设计和优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/800702.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法打卡day37|动态规划篇05| Leetcode1049.最后一块石头的重量II、494.目标和、474.一和零

算法题 Leetcode 1049.最后一块石头的重量II 题目链接:1049.最后一块石头的重量II 大佬视频讲解&#xff1a;最后一块石头的重量II视频讲解 个人思路 和昨天的分割等和子集有些相像&#xff0c;这道题也是尽量让石头分成重量相同的两堆&#xff0c;相撞之后剩下的石头最小&am…

Discord注册教程:Discord刚注册就被封怎么办?附申诉教程!

Discord如今在海外社交媒体平台中迅速崛起&#xff0c;许多社交媒体营销人员也纷纷利用其社群特性进行推广&#xff0c;Discord注册也就成为社媒营销人员必经之路。然而&#xff0c;很多人注册Discord账号时常常会想&#xff1a;“在国内使用Discord会封号吗&#xff1f;”事实…

STL库常用数据结构及常见用法

&#xff08;注意&#xff0c;这里介绍的用法只是常用的&#xff0c;但是不完全&#xff0c;如若有错&#xff0c;可以更改&#xff09; 一.vector 可以看成变长数组&#xff0c;长度可变。 1.定义 vector<type>vi; 2.尾部增加元素 vi.push_back(el); 3.删除尾部元素 …

3d模型怎么取消光标轴定位---模大狮模型网

取消光标轴定位可以帮助您将3D模型的旋转、缩放和移动操作重置为全局坐标系。不同的3D建模软件可能有不同的方法来取消光标轴定位。以下是一般情况下在常见的3D建模软件(例如Blender、Maya、3ds Max等)中取消光标轴定位的方法&#xff1a; Blender中取消光标轴定位&#xff1a;…

【Canvas技法】图解绘制圆弧的重要函数 arc(x,y,r,startAngle,endAngle,clockWise)

【一图释疑】 【绘制上图用代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>Html5/Canvas中绘制圆弧的重要函数 arc(x,y,r,startA…

2024.4.1-day06-认识 CSS(三大特性、引入方式)

个人主页&#xff1a;学习前端的小z 个人专栏&#xff1a;HTML5和CSS3悦读 本专栏旨在分享记录每日学习的前端知识和学习笔记的归纳总结&#xff0c;欢迎大家在评论区交流讨论&#xff01; day06-认识 CSS(三大特性、引入方式) 文章目录 day06-认识 CSS(三大特性、引入方式)作业…

Chatgpt掘金之旅—有爱AI商业实战篇|内容策展业务|(八)

演示站点&#xff1a; https://ai.uaai.cn 对话模块 官方论坛&#xff1a; www.jingyuai.com 京娱AI 一、AI技术创业内容策展业务有哪些机会&#xff1f; 人工智能&#xff08;AI&#xff09;技术作为当今科技创新的前沿领域&#xff0c;为创业者提供了广阔的机会和挑战。随着…

JavaScript - 你知道Ajax的原理吗?如何封装一个Ajax

难度级别:中高级及以上 提问概率:75% 想要实现Ajax,就需要创建它的核心通信对象XMLHttpRequest,通过核心对象的open方法与服务端建立连接,核心对象的send方法可以将请求所需数据发送给服务端,服务端接收到请求并做出响应,我们通过核心对象…

【JS获取宽高】JavaScript获取浏览器、元素、屏幕的宽高尺寸

原文链接&#xff1a;JavaScript获取浏览器、元素、屏幕的宽高尺寸 原文讲得非常详细&#xff0c;在此分享和记录&#xff01;

linux 配置pg官方镜像

针对linux 系统没有对应pg版本 1、编辑 PostgreSQL 的源列表文件 sudo nano /etc/apt/sources.list.d/pgdg.list 2、使用 PostgreSQL 官方的镜像源地址 deb http://apt.postgresql.org/pub/repos/apt/ focal-pgdg main 3、导入 PostgreSQL 的 GPG 公钥&#xff1a; wget --quie…

Python操作Neo4j数据库

建立Neo4j链接 !pip install neo4j pyahocorasick numpy pandas --no-warn-script-location定义数据操作对象 from neo4j_driver import Neo4jConnection, Node链接并查看节点数量 conn Neo4jConnection(neo4j://localhost:7687/, neo4j, Lorne2022)conn.create(Node("Pe…

Linux:冯·诺依曼结构 OS管理机制

Linux&#xff1a;冯诺依曼结构 & OS管理机制 冯诺依曼结构OS管理机制OS对下层硬件的管理OS对上层用户的服务 冯诺依曼结构 我们常见的计算机&#xff0c;比如笔记本&#xff0c;台式电脑。以及一下不常见的计算机&#xff0c;比如服务器&#xff0c;几乎都遵循冯诺依曼体…

积木-蓝桥每日真题

0积木 - 蓝桥云课 (lanqiao.cn) 题目描述 小明用积木搭了一个城堡。 为了方便&#xff0c;小明在搭的时候用的是一样大小的正方体积木&#xff0c;搭在了一个n行m列的方格图上&#xff0c;每个积木正好占据方格图的一个小方格。 当然&#xff0c;小明的城堡并不是平面的&#x…

说说对WebSocket的理解?应用场景?

一、是什么 WebSocket&#xff0c;是一种网络传输协议&#xff0c;位于OSI模型的应用层。可在单个TCP连接上进行全双工通信&#xff0c;能更好的节省服务器资源和带宽并达到实时通迅 客户端和服务器只需要完成一次握手&#xff0c;两者之间就可以创建持久性的连接&#xff0c…

【LeetCode热题100】【栈】柱状图中最大的矩形

题目链接&#xff1a;84. 柱状图中最大的矩形 - 力扣&#xff08;LeetCode&#xff09; 要找最大的矩形就是要找以每根柱子为高度往两边延申的边界&#xff0c;要作为柱子的边界就必须高度不能低于该柱子&#xff0c;否则矩形无法同高&#xff0c;也就是需要找出以每根柱子为高…

学习嵌入式可以胜任哪一些行业?

嵌入式技术之应用范围甚广&#xff0c;其多见于机器人、无人机、医疗器械以及军工等领域&#xff0c;为学习者带来诸多广泛之职业机遇。嵌入式工程师于此诸领域中扮演关键之角色&#xff0c;负责解决硬件平台适配等诸问题&#xff0c;以为创新提供支撑之力。 虽嵌入式技术与日…

2024年中国金融科技(FinTech)行业发展洞察报告

核心摘要&#xff1a; 金融监管体系的改革推动金融科技行业进入超级监管时代&#xff0c;数据要素应用与金融场景建设成为如今行业关注的重要领域&#xff0c;为金融机构提供以业务需求为导向的技术服务成为“厚积成势”阶段行业发展的新目标&#xff0c;市场参与者的“业技融…

管易云和金蝶云星空接口打通对接实战

管易云和金蝶云星空接口打通对接实战 对接系统&#xff1a;管易云 管易云是金蝶旗下专注提供电商企业管理软件服务的子品牌&#xff0c;先后开发了C-ERP、EC-OMS、EC-WMS、E店管家、BBC、B2B、B2C商城网站建设等产品和服务&#xff0c;涵盖电商业务全流程。 接入系统&#xff1…

idea导入eclipse项目记录

eclipse虽然是免费的但是着实难用(可能是自身不熟悉&#xff09;&#xff0c;就连看class的源代码还得去市场下个插件&#xff0c;结果还搜索不到。对于习惯 IntelliJ 全家桶的的用户来说&#xff0c;用eclipse真的太痛苦。所以迁移eclipse到idea。 本来想着会有困难&#xff…

加州大学欧文分校英语基础语法专项课程02:Questions, Present Progressive and Future Tenses 学习笔记

Questions, Present Progressive and Future Tenses Course Certificate 本文是学习 Questions, Present Progressive and Future Tenses 这门课的学习笔记&#xff0c;如有侵权&#xff0c;请联系删除。 文章目录 Questions, Present Progressive and Future TensesWeek 01: …