轨迹规划 | 图解最优控制LQR算法(附ROS C++/Python/Matlab仿真)

目录

  • 0 专栏介绍
  • 1 最优控制理论
  • 2 线性二次型问题
  • 3 LQR的价值迭代推导
  • 4 基于差速模型的LQR控制
  • 5 仿真实现
    • 5.1 ROS C++实现
    • 5.2 Python实现
    • 5.3 Matlab实现

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


1 最优控制理论

最优控制理论是一种数学和工程领域的理论,旨在寻找如何使系统在给定约束条件下达到最佳性能的方法。它的基本思想是通过选择合适的控制输入,以最小化或最大化某个性能指标来优化系统的行为。其中,系统的动态行为通常用状态方程描述,状态表示系统在某一时刻的内部状态。状态空间表示将系统的状态和控制输入表示为向量,通常用微分方程或差分方程来描述系统的演化。在最优控制理论中,会设置代价函数或者目标函数,用来衡量系统行为的好坏的函数。性能指标可以是各种形式,如最小化路径长度、最小化能量消耗、最大化系统稳定性等。最优控制理论在许多领域都有广泛的应用,包括航空航天、机器人学、经济学、生态学等。

2 线性二次型问题

若系统动力学特性可以用一组线性微分方程表示,且性能指标为状态变量和控制变量的二次型函数,则此类最优控制问题称为线性二次型问题线性二次调节器(Linear Quadratic Regulator, LQR)是求解线性二次型问题常用的求解方法之一,其假设系统零输入且期望状态为零

在这里插入图片描述

如图所示的全状态反馈控制系统。设控制误差 x k = z k − z k ∗ \boldsymbol{x}_k=\boldsymbol{z}_k-\boldsymbol{z}_{k}^{*} xk=zkzk,其中 z k \boldsymbol{z}_k zk z k ∗ \boldsymbol{z}_{k}^{*} zk分别是第 k k k个控制时间步的实际状态和期望状态,则全反馈控制律由误差驱动

v k = v k ∗ − K x k ⇔ u = v − v ∗ u k = − K x k \boldsymbol{v}_k=\boldsymbol{v}_{k}^{*}-\boldsymbol{Kx}_k\xLeftrightarrow{\boldsymbol{u}=\boldsymbol{v}-\boldsymbol{v}^*}\boldsymbol{u}_k=-\boldsymbol{Kx}_k vk=vkKxku=vv uk=Kxk

上式表明可以通过选取状态变量和输入变量,使系统等效为零输入(跟踪期望输入)且期望状态为零(消除状态误差),满足应用LQR进行最优控制的条件。定义代价函数

J = ∑ k = 0 N ( x k T Q x k + u k T R u k ) J=\sum_{k=0}^N{\left( \boldsymbol{x}_{k}^{T}\boldsymbol{Qx}_k+\boldsymbol{u}_{k}^{T}\boldsymbol{Ru}_k \right)} J=k=0N(xkTQxk+ukTRuk)

其中 Q \boldsymbol{Q} Q R \boldsymbol{R} R是用户设定的半正定矩阵,前者衡量了系统状态向期望轨迹的收敛速度,后者衡量了系统能量消耗的相对大小,二者互相制约——希望系统快速收敛往往需要加强控制力度,导致能量耗散。因此, 与 需要结合具体场景进行调节。

3 LQR的价值迭代推导

针对 J J J进行优化,引入价值迭代策略,价值迭代的理论基础请看Pytorch深度强化学习1-4:策略改进定理与贝尔曼最优方程详细推导

J k ( x k , u k ) = min ⁡ u k [ x k T Q x k + u k T R u k + J k + 1 ( x k + 1 ) ] J_k\left( \boldsymbol{x}_k,\boldsymbol{u}_k \right) =\underset{\boldsymbol{u}_k}{\min}\left[ \boldsymbol{x}_{k}^{T}\boldsymbol{Qx}_k+\boldsymbol{u}_{k}^{T}\boldsymbol{Ru}_k+J_{k+1}\left( \boldsymbol{x}_{k+1} \right) \right] Jk(xk,uk)=ukmin[xkTQxk+ukTRuk+Jk+1(xk+1)]

即第 k k k步到终端的代价等于当前步的代价与第 k + 1 k+1 k+1步到终端的代价之和。根据 J J J的定义,其一定能表示成二次型 J k = x k T P k x k J_k=\boldsymbol{x}_{k}^{T}\boldsymbol{P}_k\boldsymbol{x}_k Jk=xkTPkxk,对于优化问题 u k = a r g min ⁡ u k J k ( x k , u k ) \boldsymbol{u}_k=\mathrm{arg}\min _{\boldsymbol{u}_k}J_k\left( \boldsymbol{x}_k,\boldsymbol{u}_k \right) uk=argminukJk(xk,uk),令

∂ J k ( x k , u k ) ∂ u k = ∂ ∂ u k ( x k T P k x k + u k T R u k + J k + 1 ( A x k + B u k ) ) = ∂ ∂ u k ( u k T R u k + ( A x k + B u k ) T P k + 1 ( A x k + B u k ) ) = 2 ( R + B T P k + 1 B ) u k + 2 B T P k + 1 A x k = 0 \begin{aligned}\frac{\partial J_k\left( \boldsymbol{x}_k,\boldsymbol{u}_k \right)}{\partial \boldsymbol{u}_k}&=\frac{\partial}{\partial \boldsymbol{u}_k}\left( \boldsymbol{x}_{k}^{T}\boldsymbol{P}_k\boldsymbol{x}_k+\boldsymbol{u}_{k}^{T}\boldsymbol{Ru}_k+J_{k+1}\left( \boldsymbol{Ax}_k+\boldsymbol{Bu}_k \right) \right) \\&=\frac{\partial}{\partial \boldsymbol{u}_k}\left( \boldsymbol{u}_{k}^{T}\boldsymbol{Ru}_k+\left( \boldsymbol{Ax}_k+\boldsymbol{Bu}_k \right) ^T\boldsymbol{P}_{k+1}\left( \boldsymbol{Ax}_k+\boldsymbol{Bu}_k \right) \right) \\&=2\left( \boldsymbol{R}+\boldsymbol{B}^T\boldsymbol{P}_{k+1}\boldsymbol{B} \right) \boldsymbol{u}_k+2\boldsymbol{B}^T\boldsymbol{P}_{k+1}\boldsymbol{Ax}_k\\&=0\end{aligned} ukJk(xk,uk)=uk(xkTPkxk+ukTRuk+Jk+1(Axk+Buk))=uk(ukTRuk+(Axk+Buk)TPk+1(Axk+Buk))=2(R+BTPk+1B)uk+2BTPk+1Axk=0

u k ∗ = − ( R + B T P k + 1 B ) − 1 B T P k + 1 A x k \boldsymbol{u}_{k}^{*}=-\left( \boldsymbol{R}+\boldsymbol{B}^T\boldsymbol{P}_{k+1}\boldsymbol{B} \right) ^{-1}\boldsymbol{B}^T\boldsymbol{P}_{k+1}\boldsymbol{Ax}_k uk=(R+BTPk+1B)1BTPk+1Axk,对比 u k = − K x k \boldsymbol{u}_k=-\boldsymbol{Kx}_k uk=Kxk可得

K k = ( R + B T P k + 1 B ) − 1 B T P k + 1 A \boldsymbol{K}_k=\left( \boldsymbol{R}+\boldsymbol{B}^T\boldsymbol{P}_{k+1}\boldsymbol{B} \right) ^{-1}\boldsymbol{B}^T\boldsymbol{P}_{k+1}\boldsymbol{A} Kk=(R+BTPk+1B)1BTPk+1A

u k = − K x k \boldsymbol{u}_k=-\boldsymbol{Kx}_k uk=Kxk代入 J k J_k Jk可得

J k = x k T P k x k = x k T ( Q + K k T R K k + ( A − B K k ) P k + 1 ( A − B K k ) ) x k J_k=\boldsymbol{x}_{k}^{T}\boldsymbol{P}_k\boldsymbol{x}_k=\boldsymbol{x}_{k}^{T}\left( \boldsymbol{Q}+\boldsymbol{K}_{k}^{T}\boldsymbol{RK}_k+\left( \boldsymbol{A}-\boldsymbol{BK}_k \right) \boldsymbol{P}_{k+1}\left( \boldsymbol{A}-\boldsymbol{BK}_k \right) \right) \boldsymbol{x}_k Jk=xkTPkxk=xkT(Q+KkTRKk+(ABKk)Pk+1(ABKk))xk

从而

P k = Q + A T P k + 1 A − A T P k + 1 B ( R + B T P k + 1 B ) − 1 B T P k + 1 A \boldsymbol{P}_k=\boldsymbol{Q}+\boldsymbol{A}^T\boldsymbol{P}_{k+1}\boldsymbol{A}-\boldsymbol{A}^T\boldsymbol{P}_{k+1}\boldsymbol{B}\left( \boldsymbol{R}+\boldsymbol{B}^T\boldsymbol{P}_{k+1}\boldsymbol{B} \right) ^{-1}\boldsymbol{B}^T\boldsymbol{P}_{k+1}\boldsymbol{A} Pk=Q+ATPk+1AATPk+1B(R+BTPk+1B)1BTPk+1A

称为离散迭代黎卡提方程。根据贝尔曼最优原理,在迭代过程中 P k \boldsymbol{P}_k Pk会逐步收敛。

4 基于差速模型的LQR控制

根据差分机器人运动学模型

p ˙ = [ x ˙ y ˙ θ ˙ ] = [ v cos ⁡ θ v sin ⁡ θ ω ] = [ f 1 f 2 f 3 ] \boldsymbol{\dot{p}}=\left[ \begin{array}{c} \dot{x}\\ \dot{y}\\ \dot{\theta}\\\end{array} \right] =\left[ \begin{array}{c} v\cos \theta\\ v\sin \theta\\ \omega\\\end{array} \right] =\left[ \begin{array}{c} f_1\\ f_2\\ f_3\\\end{array} \right] p˙= x˙y˙θ˙ = vcosθvsinθω = f1f2f3

选择状态量 p = [ x y θ ] T \boldsymbol{p}=\left[ \begin{matrix} x& y& \theta\\\end{matrix} \right] ^T p=[xyθ]T和状态误差量 x = [ x − x r y − y r θ − θ r ] T \boldsymbol{x}=\left[ \begin{matrix} x-x_r& y-y_r& \theta -\theta _r\\\end{matrix} \right] ^T x=[xxryyrθθr]T,控制量 s = [ v ω ] T \boldsymbol{s}=\left[ \begin{matrix} v& \omega\\\end{matrix} \right] ^T s=[vω]T和控制误差量 u = [ v − v r ω − ω r ] T \boldsymbol{u}=\left[ \begin{matrix} v-v_r& \omega -\omega _r\\\end{matrix} \right] ^T u=[vvrωωr]T,可得

x ( k + 1 ) = ( T A + I ) x ( k ) + T B u ( k ) \boldsymbol{x}\left( k+1 \right) =\left( T\boldsymbol{A}+\boldsymbol{I} \right) \boldsymbol{x}\left( k \right) +T\boldsymbol{Bu}\left( k \right) x(k+1)=(TA+I)x(k)+TBu(k)

其中

A = [ 0 0 − v r sin ⁡ θ r 0 0 v r cos ⁡ θ r 0 0 0 ] , B = [ cos ⁡ θ r 0 sin ⁡ θ r 0 0 1 ] \boldsymbol{A}=\left[ \begin{matrix} 0& 0& -v_r\sin \theta _r\\ 0& 0& v_r\cos \theta _r\\ 0& 0& 0\\\end{matrix} \right] , \boldsymbol{B}=\left[ \begin{matrix} \cos \theta _r& 0\\ \sin \theta _r& 0\\ 0& 1\\\end{matrix} \right] A= 000000vrsinθrvrcosθr0 ,B= cosθrsinθr0001

接着按照LQR算法求解即可。

5 仿真实现

5.1 ROS C++实现

核心代码如下所示

Eigen::Vector2d LQRPlanner::_lqrControl(Eigen::Vector3d s, Eigen::Vector3d s_d, Eigen::Vector2d u_r)
{Eigen::Vector2d u;Eigen::Vector3d e(s - s_d);e[2] = regularizeAngle(e[2]);// state equation on errorEigen::Matrix3d A = Eigen::Matrix3d::Identity();A(0, 2) = -u_r[0] * sin(s_d[2]) * d_t_;A(1, 2) = u_r[0] * cos(s_d[2]) * d_t_;Eigen::MatrixXd B = Eigen::MatrixXd::Zero(3, 2);B(0, 0) = cos(s_d[2]) * d_t_;B(1, 0) = sin(s_d[2]) * d_t_;B(2, 1) = d_t_;// discrete iteration Ricatti equationEigen::Matrix3d P, P_;P = Q_;for (int i = 0; i < max_iter_; ++i){Eigen::Matrix2d temp = R_ + B.transpose() * P * B;P_ = Q_ + A.transpose() * P * A - A.transpose() * P * B * temp.inverse() * B.transpose() * P * A;if ((P - P_).array().abs().maxCoeff() < eps_iter_)break;P = P_;}// feedbackEigen::MatrixXd K = -(R_ + B.transpose() * P_ * B).inverse() * B.transpose() * P_ * A;u = u_r + K * e;return u;
}

在这里插入图片描述

5.2 Python实现

核心代码如下所示

def lqrControl(self, s: tuple, s_d: tuple, u_r: tuple) -> np.ndarray:dt = self.params["TIME_STEP"]# state equation on errorA = np.identity(3)A[0, 2] = -u_r[0] * np.sin(s_d[2]) * dtA[1, 2] = u_r[0] * np.cos(s_d[2]) * dtB = np.zeros((3, 2))B[0, 0] = np.cos(s_d[2]) * dtB[1, 0] = np.sin(s_d[2]) * dtB[2, 1] = dt# discrete iteration Ricatti equationP, P_ = np.zeros((3, 3)), np.zeros((3, 3))P = self.Q# iterationfor _ in range(self.lqr_iteration):P_ = self.Q + A.T @ P @ A - A.T @ P @ B @ np.linalg.inv(self.R + B.T @ P @ B) @ B.T @ P @ Aif np.max(P - P_) < self.eps_iter:breakP = P_# feedbackK = -np.linalg.inv(self.R + B.T @ P_ @ B) @ B.T @ P_ @ Ae = np.array([[s[0] - s_d[0]], [s[1] - s_d[1]], [self.regularizeAngle(s[2] - s_d[2])]])u = np.array([[u_r[0]], [u_r[1]]]) + K @ ereturn np.array([[self.linearRegularization(float(u[0]))], [self.angularRegularization(float(u[1]))]])

在这里插入图片描述

5.3 Matlab实现

核心代码如下所示

function u = lqrControl(s, s_d, u_r, robot, param)dt = param.dt;% state equation on errorA = eye(3);A(1, 3) = -u_r(1) * sin(s_d(3)) * dt;A(2, 3) = u_r(1) * cos(s_d(3)) * dt;B = zeros(3, 2);B(1, 1) = cos(s_d(3)) * dt;B(2, 1) = sin(s_d(3)) * dt;B(3, 2) = dt;% discrete iteration Ricatti equationP = param.Q;% iterationfor i=1:param.lqr_iterationP_ = param.Q + A' * P * A - A' * P * B / (param.R + B' * P * B) * B' * P * A;if max(P - P_) < param.eps_iterbreak;endP = P_;end% feedbackK = -inv(param.R + B' * P_ * B) * B' * P_ * A;e = [s(1) - s_d(1); s(2) - s_d(2); regularizeAngle(s(3) - s_d(3))];u = [u_r(1); u_r(2)] + K * e;u = [linearRegularization(robot, u(1), param), angularRegularization(robot, u(2), param)];
end

在这里插入图片描述

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/799688.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

硬件标准化之道:Linux社区与硬件厂商的协同创新

在Linux的广阔世界中&#x1f30c;&#xff0c;与各式各样的硬件设备进行互动和协作是一项不断进行的挑战&#x1f527;。硬件厂商和Linux社区的紧密合作&#xff0c;通过制定一系列标准和协议&#x1f4dc;&#xff0c;使得从键盘&#x1f3b9;和鼠标&#x1f5b1;到复杂的网络…

七、Ajax(Django开发)

Ajax&#xff08;Django开发&#xff09; 知识点的回顾&#xff1a;1.Ajax请求2.订单小结3.图表4.关于文件上传4.1基本操作案例&#xff1a;批量上传数据案例&#xff1a;混合数据&#xff08;Form&#xff09;4.2启用media案例&#xff1a;混合数据&#xff08;form&#xff0…

C++设计模式:桥模式(五)

1、定义与动机 桥模式定义&#xff1a;将抽象部分&#xff08;业务功能&#xff09;与实现部分&#xff08;平台实现&#xff09;分离&#xff0c;使他们可以独立地变化引入动机&#xff1a; 由于某些类型的固有的实现逻辑&#xff0c;使得它们具有两个变化的维度&#xff0c;…

阿里云服务器可以干嘛 阿里云服务器应用场景有哪些

阿里云服务器可以干嘛&#xff1f;能干啥你还不知道么&#xff01;简单来讲可用来搭建网站、个人博客、企业官网、论坛、电子商务、AI、LLM大语言模型、测试环境等&#xff0c;阿里云百科aliyunbaike.com整理阿里云服务器的用途&#xff1a; 阿里云服务器活动 aliyunbaike.com…

单例模式--理解

单例模式 单例模式是指在内存中只会创建且仅创建一次对象的设计模式。在程序中多次使用同一个对象且作用相同时&#xff0c;为了防止频繁地创建对象使得内存飙升&#xff0c;单例模式可以让程序仅在内存中创建一个对象&#xff0c;让所有需要调用的地方都共享这一单例对象。 单…

使用docker-compose创建多项目容器运行

使用docker-compose创建多项目容器运行 按招网友提供方法创建 docker-compose.yml内容&#xff08;这里改了桥接模式&#xff0c;并且注释放开&#xff09; version: "3" services:docker_python:image: python:2.7.18container_name: py_appworking_dir: "/r…

婴儿洗衣机哪种比较实用?精选四大热门口碑婴儿洗衣机推荐

对于有了宝宝的家庭来说&#xff0c;洗衣成为了一项重要的家务事。大家都知道&#xff0c;宝宝的皮肤比较娇嫩&#xff0c;容易受到各种细菌、病毒的侵扰。所以&#xff0c;宝宝的衣物应该与大人的分开洗。婴儿洗衣机作为一种专门为婴幼儿家庭设计的洗衣机&#xff0c;其具有除…

nginx部署前端教程

目录 一、前言二、部署三、注意四、参考 一、前言 一般来说现在的软件项目&#xff0c;都是分用户端以及管理端的&#xff0c;并且是前后端分离的&#xff0c;这里我来记录一下部署两个前端的教程。 部署前端之前需要的准备工作是部署springBoot后端程序&#xff0c;这里我do…

qt设置异形图片并实现透明效果

思路:将背景设置为透明,然后将图片设置给label,将laben和this都设置为图片大小 setAttribute(Qt::WA_TranslucentBackground, true); 可以将背景设置为透明 然后 QPixmap *pixnew QPixmap(":/Image/xxx.png"); this->setFixedSize(pix->width(),pix->…

对OceanBase中的配置项与系统变量,合法性检查实践

在“OceanBase 配置项&系统变量实现及应用详解”的系列文章中&#xff0c;我们已经对配置项和系统变量的源码进行了解析。当涉及到新增配置项或系统变量时&#xff0c;通常会为其指定一个明确的取值范围或定义一个专门的合法性检查函数。本文将详细阐述在不同情境下&#x…

深入理解指针2:数组名理解、一维数组传参本质、二级指针、指针数组和数组指针、函数中指针变量

目录 1、数组名理解 2、一维数组传参本质 3、二级指针 4、指针数组和数组指针 5、函数指针变量 1、数组名理解 首先来看一段代码&#xff1a; int main() {int arr[10] { 1,2,3,4,5,6,7,8,9,10 };printf("%d\n", sizeof(arr));return 0; } 输出的结果是&…

[大模型]大语言模型量化方法对比:GPTQ、GGUF、AWQ

在过去的一年里&#xff0c;大型语言模型(llm)有了飞速的发展&#xff0c;在本文中&#xff0c;我们将探讨几种(量化)的方式&#xff0c;除此以外&#xff0c;还会介绍分片及不同的保存和压缩策略。 说明&#xff1a;每次加载LLM示例后&#xff0c;建议清除缓存&#xff0c;以…

python之列表操作

1、创建列表 代码示例&#xff1a; i [1, 2, 34, 4] o list((1, 2, 3, 4, 5, 6)) 分别创建了两个数组&#xff0c;这两种格式都能创建数组 2、关于数组的操作 1、添加元素 1、append&#xff08;&#xff09; append方法主要是添加一个元素 代码示例如下&#xff1a;…

深度学习理论基础(七)Transformer编码器和解码器

学习目录&#xff1a; 深度学习理论基础&#xff08;一&#xff09;Python及Torch基础篇 深度学习理论基础&#xff08;二&#xff09;深度神经网络DNN 深度学习理论基础&#xff08;三&#xff09;封装数据集及手写数字识别 深度学习理论基础&#xff08;四&#xff09;Parse…

手机软件何时统一--桥接模式

1.1 凭什么你的游戏我不能玩 2007年苹果手机尚未出世&#xff0c;机操作系统多种多样&#xff08;黑莓、塞班、Tizen等&#xff09;&#xff0c;互相封闭。而如今&#xff0c;存世的手机操作系统只剩下苹果OS和安卓&#xff0c;鸿蒙正在稳步进场。 1.2 紧耦合的程序演化 手机…

vue的 blob文件下载文件时,后端自定义异常,并返回json错误提示信息,前端捕获信息并展示给用户

1.后端返回的json数据结构为&#xff1a; {"message":"下载失败&#xff0c;下载文件不存在&#xff0c;请联系管理员处理&#xff01;","code":500} 2.vue 请求后台接口返回的 Blob数据 3.问题出现的原因是&#xff0c;正常其他数据列表接口&…

[C++][算法基础]堆排序(堆)

输入一个长度为 n 的整数数列&#xff0c;从小到大输出前 m 小的数。 输入格式 第一行包含整数 n 和 m。 第二行包含 n 个整数&#xff0c;表示整数数列。 输出格式 共一行&#xff0c;包含 m 个整数&#xff0c;表示整数数列中前 m 小的数。 数据范围 1≤m≤n≤&#x…

第4章 Redis,一站式高性能存储方案,笔记问题

点赞具体要实现功能有哪些&#xff1f; 可以点赞的地方&#xff1a;对帖子点赞&#xff0c;对评论点赞点一次是点赞&#xff0c;再点一次是取消赞统计点赞的数量&#xff08;计数&#xff0c;string&#xff09;&#xff0c;帖子被点赞的数量&#xff0c;某个用户被点赞的数量…

【数据结构】考研真题攻克与重点知识点剖析 - 第 5 篇:树与二叉树

&#xff08;考研真题待更新&#xff09; 欢迎订阅专栏&#xff1a;408直通车 请注意&#xff0c;本文中的部分内容来自网络搜集和个人实践&#xff0c;如有任何错误&#xff0c;请随时向我们提出批评和指正。本文仅供学习和交流使用&#xff0c;不涉及任何商业目的。如果因本…

2024免费Mac电脑用户的系统清理和优化软件CleanMyMac

作为产品营销专家&#xff0c;对于各类产品的特性与优势有着深入的了解。CleanMyMac是一款针对Mac电脑用户的系统清理和优化软件&#xff0c;旨在帮助用户轻松管理、优化和保护Mac电脑。以下是关于CleanMyMac的详细介绍&#xff1a; CleanMyMac X2024全新版下载如下: https://…