[大模型]大语言模型量化方法对比:GPTQ、GGUF、AWQ

在过去的一年里,大型语言模型(llm)有了飞速的发展,在本文中,我们将探讨几种(量化)的方式,除此以外,还会介绍分片及不同的保存和压缩策略。

说明:每次加载LLM示例后,建议清除缓存,以防止出现OutOfMemory错误。

del model, tokenizer, pipe import torch 
torch.cuda.empty_cache()

如果在jupyter中无法释放显存,请重启这个jupyter notebook。

模型加载

加载LLM的最直接、最普通的方式是通过 Transformers。HuggingFace已经创建了一个套件,我们能够直接使用

pip install git+https://github.com/huggingface/transformers.git 
pip install accelerate bitsandbytes xformers

安装完成后,我们可以使用以下管道轻松加载LLM:

from torch import bfloat16
from transformers import pipeline# Load in your LLM without any compression tricks
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=bfloat16, device_map="auto"
)

我们这里使用zephyr-7b-beta作为示例

这种加载LLM的方法通常不会执行任何压缩技巧。我们来做个使用的示例

messages = [{"role": "system","content": "You are a friendly chatbot.",},{"role": "user", "content": "Tell me a funny joke about Large Language Models."},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True
)

使用内部提示模板生成的提示是这样构造的:

 

然后,我们可将提示传递给LLM来生成答案:

outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.1, top_p=0.95
)
print(outputs[0]["generated_text"])

这是一个最直接的使用流程,但是对于纯推理,这种方法效率是最低的,因为在没有任何压缩或量化策略的情况下加载整个模型。

分片

在我们进入量化策略之前,我们先介绍一个前置的方法:分片。通过分片可以将模型分割成小块,每个分片包含模型的较小部分,通过在不同设备上分配模型权重来解决GPU内存限制。

虽然它没有任何的压缩和量化,但是这种方法算是一个最简单的加载大模型的方案。

比如Zephyr-7B-β,实际上已经分片了!如果进入模型并点击“Files and versions”链接,可以看到模型被分成了8个部分。

 

 

模型的分片非常简单,可以直接使用Accelerate 包:

from accelerate import Accelerator# Shard our model into pieces of 1GB
accelerator = Accelerator()
accelerator.save_model(model=pipe.model, save_directory="/content/model", max_shard_size="4GB"
)

这样将模型分成4GB的分片

量化

大型语言模型由一堆权重和激活表示。这些值通常由通常的32位浮点(float32)数据类型表示。

比特的数量告诉你它可以表示多少个值。Float32可以表示1.18e-38和3.4e38之间的值,相当多的值!比特数越少,它能表示的值就越少。

如果我们选择较低的位大小,那么模型就会变得不那么准确,但它表示更少的值,从而降低其大小和内存需求。

 

量化是指将LLM从其原始Float32表示转换为更小的表示。我们不希望简单地使用较小的位变体,而是希望在不丢失太多信息的情况下将较大的位表示映射到较小的位。

所以一般情况下,我们经常使用一种名为4bit-NormalFloat (NF4)的新格式来实现这一点。这个数据类型做了一些特殊的技巧,以便有效地表示更大的位数据类型。它包括三个步骤:

归一化:将模型的权重归一化,以便我们期望权重落在一定范围内。这允许更有效地表示更常见的值。

量化:将权重量化为4位。在NF4中,量化级别相对于归一化权重是均匀间隔的,从而有效地表示原始的32位权重。

去量化:虽然权重以4位存储,但它们在计算期间被去量化,从而在推理期间提高性能。

我们可以直接使用Bitsandbytes库进行量化操作:

from transformers import BitsAndBytesConfig
from torch import bfloat16# Our 4-bit configuration to load the LLM with less GPU memory
bnb_config = BitsAndBytesConfig(load_in_4bit=True,  # 4-bit quantizationbnb_4bit_quant_type='nf4',  # Normalized float 4bnb_4bit_use_double_quant=True,  # Second quantization after the firstbnb_4bit_compute_dtype=bfloat16  # Computation type
)

上面的配置指定要使用的量化级别。比如4位量化表示权重,但用16位进行推理。

然后在管道中加载模型就很简单了:

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline# Zephyr with BitsAndBytes Configuration
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-alpha")
model = AutoModelForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-alpha",quantization_config=bnb_config,device_map='auto',
)# Create a pipeline
pipe = pipeline(model=model, tokenizer=tokenizer, task='text-generation')

接下来使用与之前相同的提示:

outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.95
)
print(outputs[0]["generated_text"])

量化是一种强大的技术,可以减少模型的内存需求,同时保持性能相似。它允许更快的加载、使用和微调llm,即使使用较小的gpu。

预量化(GPTQ、AWQ、GGUF)

我们已经探索了分片和量化技术。但是量化是在每次加载模型时进行的,这是非常耗时的操作,有没有办法直接保存量化后的模型,并且在使用时直接加载呢?

TheBloke是HuggingFace上的一个用户,它为我们执行了一系列量化操作,我想用过大模型的人一定对它非常的熟悉吧

 

这些量化模型包含了很多格式GPTQ、GGUF和AWQ,我们来进行介绍

1、GPTQ: Post-Training Quantization for GPT Models

GPTQ是一种4位量化的训练后量化(PTQ)方法,主要关注GPU推理和性能。

该方法背后的思想是,尝试通过最小化该权重的均方误差将所有权重压缩到4位。在推理过程中,它将动态地将其权重去量化为float16,以提高性能,同时保持低内存。

我们需要在HuggingFace Transformers中的gptq类模型中加载:

pip install optimum
pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/

然后找到需要加载的模型,比如“TheBloke/zephyr-7B-beta-GPTQ”,进行加载

from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline# Load LLM and Tokenizer
model_id = "TheBloke/zephyr-7B-beta-GPTQ"
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(model_id,device_map="auto",trust_remote_code=False,revision="main"
)# Create a pipeline
pipe = pipeline(model=model, tokenizer=tokenizer, task='text-generation')

尽管我们安装了一些额外的依赖项,但我们可以使用与之前相同的管道,也就是是不需要修改代码,这是使用GPTQ的一大好处。

GPTQ是最常用的压缩方法,因为它针对GPU使用进行了优化。但是如果你的GPU无法处理如此大的模型,那么从GPTQ开始切换到以cpu为中心的方法(如GGUF)是绝对值得的。

2、GPT-Generated Unified Format

尽管GPTQ在压缩方面做得很好,但如果没有运行它的硬件,那么就需要使用其他的方法。

GGUF(以前称为GGML)是一种量化方法,允许用户使用CPU来运行LLM,但也可以将其某些层加载到GPU以提高速度。

虽然使用CPU进行推理通常比使用GPU慢,但对于那些在CPU或苹果设备上运行模型的人来说,这是一种非常好的格式。

使用GGUF非常简单,我们需要先安装ctransformers包:

pip install ctransformers[cuda]

然后加载模型“TheBloke/zephyr-7B-beta-GGUF”,

from ctransformers import AutoModelForCausalLM
from transformers import AutoTokenizer, pipeline# Load LLM and Tokenizer
# Use `gpu_layers` to specify how many layers will be offloaded to the GPU.
model = AutoModelForCausalLM.from_pretrained("TheBloke/zephyr-7B-beta-GGUF",model_file="zephyr-7b-beta.Q4_K_M.gguf",model_type="mistral", gpu_layers=50, hf=True
)
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta", use_fast=True
)# Create a pipeline
pipe = pipeline(model=model, tokenizer=tokenizer, task='text-generation')

加载模型后,我们可以运行如下提示:

outputs = pipe(prompt, max_new_tokens=256)
print(outputs[0]["generated_text"])

如果你想同时利用CPU和GPU, GGUF是一个非常好的格式。

3、AWQ: Activation-aware Weight Quantization

除了上面两种以外,一种新格式是AWQ(激活感知权重量化),它是一种类似于GPTQ的量化方法。AWQ和GPTQ作为方法有几个不同之处,但最重要的是AWQ假设并非所有权重对LLM的性能都同等重要。

也就是说在量化过程中会跳过一小部分权重,这有助于减轻量化损失。所以他们的论文提到了与GPTQ相比的可以由显著加速,同时保持了相似的,有时甚至更好的性能。

该方法还是比较新的,还没有被采用到GPTQ和GGUF的程度。

对于AWQ,我们将使用vLLM包:

pip install vllm

使用vLLM可以直接加载模型:

from vllm import LLM, SamplingParams # Load the LLM 
sampling_params = SamplingParams(temperature=0.0, top_p=1.0, max_tokens=256) 
llm = LLM( model="TheBloke/zephyr-7B-beta-AWQ",  quantization='awq',  dtype='half',  gpu_memory_utilization=.95,  max_model_len=4096 
)

然后使用.generate运行模型:

output = llm.generate(prompt, sampling_params) 
print(output[0].outputs[0].text)

就是这样

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/799668.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python之列表操作

1、创建列表 代码示例: i [1, 2, 34, 4] o list((1, 2, 3, 4, 5, 6)) 分别创建了两个数组,这两种格式都能创建数组 2、关于数组的操作 1、添加元素 1、append() append方法主要是添加一个元素 代码示例如下:…

深度学习理论基础(七)Transformer编码器和解码器

学习目录: 深度学习理论基础(一)Python及Torch基础篇 深度学习理论基础(二)深度神经网络DNN 深度学习理论基础(三)封装数据集及手写数字识别 深度学习理论基础(四)Parse…

手机软件何时统一--桥接模式

1.1 凭什么你的游戏我不能玩 2007年苹果手机尚未出世,机操作系统多种多样(黑莓、塞班、Tizen等),互相封闭。而如今,存世的手机操作系统只剩下苹果OS和安卓,鸿蒙正在稳步进场。 1.2 紧耦合的程序演化 手机…

vue的 blob文件下载文件时,后端自定义异常,并返回json错误提示信息,前端捕获信息并展示给用户

1.后端返回的json数据结构为: {"message":"下载失败,下载文件不存在,请联系管理员处理!","code":500} 2.vue 请求后台接口返回的 Blob数据 3.问题出现的原因是,正常其他数据列表接口&…

[C++][算法基础]堆排序(堆)

输入一个长度为 n 的整数数列,从小到大输出前 m 小的数。 输入格式 第一行包含整数 n 和 m。 第二行包含 n 个整数,表示整数数列。 输出格式 共一行,包含 m 个整数,表示整数数列中前 m 小的数。 数据范围 1≤m≤n≤&#x…

第4章 Redis,一站式高性能存储方案,笔记问题

点赞具体要实现功能有哪些? 可以点赞的地方:对帖子点赞,对评论点赞点一次是点赞,再点一次是取消赞统计点赞的数量(计数,string),帖子被点赞的数量,某个用户被点赞的数量…

【数据结构】考研真题攻克与重点知识点剖析 - 第 5 篇:树与二叉树

(考研真题待更新) 欢迎订阅专栏:408直通车 请注意,本文中的部分内容来自网络搜集和个人实践,如有任何错误,请随时向我们提出批评和指正。本文仅供学习和交流使用,不涉及任何商业目的。如果因本…

2024免费Mac电脑用户的系统清理和优化软件CleanMyMac

作为产品营销专家,对于各类产品的特性与优势有着深入的了解。CleanMyMac是一款针对Mac电脑用户的系统清理和优化软件,旨在帮助用户轻松管理、优化和保护Mac电脑。以下是关于CleanMyMac的详细介绍: CleanMyMac X2024全新版下载如下: https://…

阿里云乱扣费故障,技术堪忧

2024年4月3日,距离2023年11月的故障没有多久,阿里云又出现乱扣费故障,导致账号欠费3000多,oss,块存储,cdn等所有后付费服务停止工作,不知道这个故障能算什么级别的。 凌晨1点多,收到…

用Vue全家桶手工搓了一个类似抖音短视频的软件,全开源

用Vue全家桶手工搓了一个类似抖音短视频的软件,全开源 软件简介 用Vue全家桶手工搓了一个高仿抖音,全开源 PC浏览器请用手机模式访问。先按F12调出控制台,再按CtrlShiftM切换到手机模式,手机请用Via浏览器或者Chrome浏览器预览。…

Octopus V2:设备端super agent的高级语言模型

论文:Octopus v2: On-device language model for super agent论文地址:https://arxiv.org/abs/2404.01744模型主页:https://huggingface.co/NexaAIDev/Octopus-v2 Octopus-V2-2B Octopus-V2-2B 是一款具有20亿参数的开源先进语言模型&#…

性能分析-docker知识

docker的相关概念 docker是一个做系统虚拟化的软件,跟vmware类似,虚拟出来的也是操作系统。我们现在在企业中, 使用docker虚拟出来的系统,大多都是linux系统。 docker镜像image:就是虚拟一个docker容器需要的操作系统…

Ubuntu 20.04.06 PCL C++学习记录(十八)

[TOC]PCL中点云分割模块的学习 学习背景 参考书籍:《点云库PCL从入门到精通》以及官方代码PCL官方代码链接,,PCL版本为1.10.0,CMake版本为3.16 学习内容 PCL中实现欧式聚类提取。在点云处理中,聚类是一种常见的任务,它将点云数据划分为多…

基于单片机三相温度测量控制系统设计

**单片机设计介绍,基于单片机三相温度测量控制系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机三相温度测量控制系统设计概要主要包括系统组成、温度测量原理、控制逻辑、软件设计以及测试与验证等…

2.k8s架构

目录 k8s集群架构 控制平面 kube-apiserver kube-scheduler etcd kube-controller-manager node 组件 kubelet kube-proxy 容器运行时(Container Runtime) cloud-controller-manager 相关概念 k8s集群架构 一个Kubernetes集群至少包含一个控制…

PPT 操作

版式 PPT中,巧妙使用母版,可以提高效率。 双击母版,选择其中一个版式,插入装饰符号。 然后选择关闭。 这个时候,在该版式下的所有页面,就会出现新加入的符号。不在该版式下的页面,不会出现新加…

八股面试——数据库——索引

索引的概念 B树的概念: 索引的作用 聚簇索引与非聚簇索引 聚簇索引就是主键值,在B树上,通过主键大小(数据在B树叶子节点按主键顺序排序)寻找对应的叶子节点,叶子节点保存的一整条记录。 非聚簇索引&#x…

ctfshow web入门 命令执行 web53--web77

web53 日常查看文件 怎么回事不让我看十八 弄了半天发现并不是很对劲,原来我发现他会先回显我输入的命令再进行命令的回显 ?cnl${IFS}flag.php||web54 绕过了很多东西 基本上没有什么命令可以用了但是 grep和?通配符还可以用 ?cgrep${IFS}ctfshow${IFS}???…

分类预测 | Matlab实现ABC-LSSVM人工蜂群算法优化最小二乘支持向量机数据分类预测

分类预测 | Matlab实现ABC-LSSVM人工蜂群算法优化最小二乘支持向量机数据分类预测 目录 分类预测 | Matlab实现ABC-LSSVM人工蜂群算法优化最小二乘支持向量机数据分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.Matlab实现ABC-LSSVM人工蜂群算法优化最小二乘支…

BeautifulSoup数据抓取优化

优化 BeautifulSoup 数据抓取可以帮助提高数据抓取的效率和性能,优化的数据抓取方式更加友好,减少了对目标网站的访问压力,降低了被封禁或限制访问的风险。那边在日常中会遇到一些复杂的问题,如何解决?看看下面的几种解…