异常值分析是检验数据是否有录入错误以及含有不合常理的数据。忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会产生不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。
异常值是指样本中的个别值,其数值明显偏离其余的观测值。异常值也称为离群点,异常值的分析也称为离群点分析。
在 Python 的 Pandas库中,只需要读人数据,然后使用 describe()函数就可以查看数据的基本情况。如下示例:
原始数据:
import pandas as pd
data1=r'D:\daily\data\catering_sale.xls'
data=pd.read_excel(data1,index_col='日期')
data.describe()
运行结果如下:
其中 count是非空值数,通过len(data)可以知道数据记录为201条,因此缺失值数为1。另外,提供的基本参数还有平均值(mean)、标准差(std)、最小值(min)、最大值(max)以及1/4、1/2、3/4分位数(25%、50%、75%)。更直观地展示这些数据,并且可以检测异常值的方法是使用箱线图。
如下代码:
import matplotlib.pyplot as plt #导入图像库
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
plt.figure() #建立图像
p = data.boxplot(return_type='dict') #画箱线图,直接使用DataFrame的方法
x = p['fliers'][0].get_xdata() # 'flies'即为异常值的标签
y = p['fliers'][0].get_ydata()
y.sort() #从小到大排序
#用annotate添加注释
for i in range(len(x)):if i>0:plt.annotate(y[i], xy = (x[i],y[i]), xytext=(x[i]+0.05 -0.8/(y[i]-y[i-1]),y[i]))else:plt.annotate(y[i], xy = (x[i],y[i]), xytext=(x[i]+0.08,y[i]))
plt.show() #展示箱线图
箱线图如下:
由图可以看出,箱型图中的超过上下界的7个销售额数据可能为异常值。结合具体业务可以把 865、4060.3、4065.2归为正常值,将22、51、60、6607.4、9106.44归为异常值。最后确定过滤规则为:日销量在400以下5000以上则属于异常数据,编写过滤程序,进行后续处理。