2024年妈妈杯数学建模MathorCup数学建模思路B题思路解析+参考成品

1 赛题思路

(赛题出来以后第一时间在群内分享,点击下方群名片即可加群)

2 比赛日期和时间
报名截止时间:2024年4月11日(周四)12:00

比赛开始时间:2024年4月12日(周五)8:00

比赛结束时间:2024年4月16日(周二)9:00

3 组织机构
主办单位:中国优选法统筹法与经济数学研究会

中国优选法统筹法与经济数学研究会是在中国科学技术协会直接领导下的学术性社会团体,是国家一级学会。学会由华罗庚教授于1981年发起成立,至今成立了评价方法与应用、项目管理、计算机模拟、统筹、管理决策与信息系统、工业工程、高等教育管理、数学教育、经济数学与管理数学、应急管理、灰色系统研究,复杂系统研究等十余个专业分会。竞赛是由中国优选法统筹法与经济数学研究会主办,MathorCup高校数学建模挑战赛组委会具体负责竞赛的组织。

4 建模常见问题类型


趁现在赛题还没更新,给大家汇总一下建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题

4.1 分类问题

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

import numpy as np# 定义神经网络类
class NeuralNetwork:def __init__(self):# 随机初始化权重np.random.seed(1)self.weights = 2 * np.random.random((3, 1)) - 1# Sigmoid激活函数def sigmoid(self, x):return 1 / (1 + np.exp(-x))# Sigmoid的导数def sigmoid_derivative(self, x):return x * (1 - x)# 训练神经网络def train(self, inputs, outputs, iterations):for iteration in range(iterations):# 正向传播output = self.predict(inputs)# 计算误差error = outputs - output# 反向传播adjustment = np.dot(inputs.T, error * self.sigmoid_derivative(output))# 更新权重self.weights += adjustment# 预测def predict(self, inputs):return self.sigmoid(np.dot(inputs, self.weights))# 训练数据集
training_inputs = np.array([[0, 0, 1],[1, 1, 1],[1, 0, 1],[0, 1, 1]])training_outputs = np.array([[0, 1, 1, 0]]).T# 初始化神经网络
neural_network = NeuralNetwork()print("随机初始化的权重:")
print(neural_network.weights)# 训练神经网络
neural_network.train(training_inputs, training_outputs, 10000)print("训练后的权重:")
print(neural_network.weights)# 测试新数据
print("新数据预测结果:")
print(neural_network.predict(np.array([1, 0, 0])))

4.2 优化问题

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

from pulp import *# 创建整数规划问题
prob = LpProblem("Integer_Problem", LpMaximize)# 定义决策变量
x1 = LpVariable("x1", lowBound=0, cat='Integer')
x2 = LpVariable("x2", lowBound=0, cat='Integer')# 定义目标函数
prob += 3*x1 + 2*x2, "Objective_Function"# 添加约束条件
prob += 2*x1 + x2 <= 10
prob += x1 + 3*x2 <= 12# 解决问题
prob.solve()# 输出结果
print("Status:", LpStatus[prob.status])
print("Optimal values:")
for v in prob.variables():print(v.name, "=", v.varValue)
print("Optimal value of the objective function:", value(prob.objective))

4.3 预测问题

灰色预测

灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

import numpy as np# 灰色预测模型
def grey_prediction(data):n = len(data)# 累加生成序列accumulation = np.cumsum(data)# 计算累加生成序列的一次紧邻均值生成序列avg_accumulation = 0.5 * (accumulation[:-1] + accumulation[1:])# 建立累加生成序列的一次紧邻均值生成序列与原始数据的关系x0 = data[0]B = np.vstack((-avg_accumulation, np.ones(n-1))).TYn = data[1:]# 求解参数a, u = np.dot(np.linalg.inv(np.dot(B.T, B)), np.dot(B.T, Yn))# 模型检验Pn = (x0 - u/a) * np.exp(-a * np.arange(1, n + 1)) + u/a# 预测predict = np.hstack((x0, np.diff(Pn).cumsum()))return predict# 示例数据
data = np.array([120, 130, 125, 135, 140, 145])# 灰色预测
prediction = grey_prediction(data)# 输出预测结果
print("原始数据:", data)
print("灰色预测结果:", prediction)

4.4 评价问题

主成分分析法(降维)

是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

import numpy as np
from sklearn.decomposition import PCA# 示例数据
data = np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9],[10, 11, 12]])# 创建 PCA 模型,指定主成分数量
pca = PCA(n_components=2)# 拟合数据并进行主成分分析
pca.fit(data)# 转换数据到主成分空间
transformed_data = pca.transform(data)# 主成分
components = pca.components_# 方差解释比
explained_variance_ratio = pca.explained_variance_ratio_# 输出结果
print("原始数据:")
print(data)
print("\n主成分:")
print(components)
print("\n转换后的数据:")
print(transformed_data)
print("\n方差解释比:")
print(explained_variance_ratio)

5 建模资料 

六、获取方式

思路及参考成品将在下方名片群文件中更新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/799201.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数字人解决方案——Champ单个视频单张图像生成可控且一致的人体视频生成

概述 Champ是阿里巴巴集团、南京大学和复旦大学的研究团队共同提出了一种创新的人体动画生成技术&#xff0c;Champ能够在仅有一段原始视频和一张静态图片的情况下&#xff0c;激活图片中的人物&#xff0c;使其按照视频中的动作进行动态表现&#xff0c;极大地促进了虚拟主播…

【Emgu CV教程】10.12、Moments()函数计算轮廓矩和质心

文章目录 一、概念介绍1.矩2.矩能干什么3.矩函数 二、演示1.原始素材2.代码3.运行结果 一、概念介绍 1.矩 矩&#xff0c;英文叫moment&#xff0c;是一个数学中的概念&#xff0c;以下的解释来自百度百科&#xff1a; 是不是看不懂&#xff0c;没关系&#xff0c;数学基础不…

mysqldump: Got error: 1049: Unknown database ‘root‘ when selecting the datab

1.问题描述 MySQL版本号&#xff1a;MySQL Server 8.3MySQL持久化到处数据库结构及数据 mysqldump: Got error: 1049: Unknown database root when selecting the datab2.问题解决 cmd 切换本地路径 cd /d D:\Program Files\MySQL\MySQL Server 8.3\bin执行数据库备份命令 …

Java智慧校园系统源码 微信小程序+电子班牌

Java智慧校园系统源码 微信小程序电子班牌 通过设备管理对百纳智慧校园的智慧班牌以及百纳智慧屏&#xff08;校牌&#xff09;进行统一集中式管理&#xff0c;支持浏览所有设备的基本信息以及在离线状态&#xff0c;支持添加设备、设备一键开关机、一键重启、设置节假日开关机…

Java单链表和LinkedList的实现

一、单链表的实现 无头单向非循环链表 定义异常用于判断所给位置是否合法 public class IndexNotLegal extends RuntimeException{public IndexNotLegal(){}public IndexNotLegal(String smg){super(smg);} } class ListNode中包含当前节点的值和下一个节点指向 实现链表的…

nginx支持的多种负载均衡策略

目录 1.轮询&#xff08;默认&#xff09; 2. ip_hash 3. 加权轮询&#xff08;weight&#xff09; 4. fair&#xff08;第三方&#xff09; 5. 最少连接&#xff08;least_conn&#xff09; 1.轮询&#xff08;默认&#xff09; 将请求依次分配给每个服务器&#xff0c;确…

SpringCloud Alibaba Sentinel 实现熔断功能

一、前言 接下来是开展一系列的 SpringCloud 的学习之旅&#xff0c;从传统的模块之间调用&#xff0c;一步步的升级为 SpringCloud 模块之间的调用&#xff0c;此篇文章为第十六篇&#xff0c;即使用 Sentinel 实现熔断功能。 二、 Ribbon 系列 首先我们新建两个服务的提供者…

[StartingPoint][Tier1]Pennyworth

Important Jenkins是一个用于自动化构建、测试和部署软件项目的开源持续集成和持续部署&#xff08;CI/CD&#xff09;工具。它允许开发团队自动执行和监控在软件开发过程中的重复性任务&#xff0c;例如构建代码、运行测试、部署应用程序等。Jenkins提供了一个易于使用的Web界…

基于R语言BIOMOD2模型的物种分布模拟

随着生物多样性全球大会的举办&#xff0c;不论是管理机构及科研单位、高校都在积极准备&#xff0c;根据国家林草局最新工作指示&#xff0c;我国将积极整合、优化自然保护地&#xff0c;加快推进国家公园体制试点&#xff0c;构建以国家公园为主体的自然保护地体系。针对我国…

Spring 如何优雅的灵活的Http重试

1、背景说明 在互联网时代&#xff0c; 不同系统之间大多数是通过http调用&#xff0c;调用过程中会超时、异常等过种问题。为了保证业务稳定&#xff0c;http 重试是常用方案。下面列举几种方案。 2、Http重试方案介绍 2.1 传统方案 1、使用传统的递归调用&#xff0c;实现方…

SQL 注入之 Windows/Docker 环境 SQLi-labs 靶场搭建!

在安全测试领域&#xff0c;SQL注入是一种常见的攻击方式&#xff0c;通过应用程序的输入执行恶意SQL查询&#xff0c;从而绕过认证和授权&#xff0c;可以窃取、篡改或破坏数据库中的数据。作为安全测试学习者&#xff0c;如果你要练习SQL注入&#xff0c;在未授权情况下直接去…

深入浅出 -- 系统架构之负载均衡Nginx实现高可用

一、Nginx的高可用 线上如果采用单个节点的方式部署Nginx&#xff0c;难免会出现天灾人祸&#xff0c;比如系统异常、程序宕机、服务器断电、机房爆炸、地球毁灭....哈哈哈&#xff0c;夸张了。但实际生产环境中确实存在隐患问题&#xff0c;由于Nginx作为整个系统的网关层接入…

anylabeling使用和安装

源码地址&#xff1a; git clone https://github.com/vietanhdev/anylabeling.git Auto Labeling with Segment Anything Youtube Demo: https://www.youtube.com/watch?v5qVJiYNX5KkDocumentation: https://anylabeling.nrl.ai Features: Image annotation for polygon, r…

利用Leaflet + React:构建WEBGIS

React是 Facebook 开发的一个开源库&#xff0c;用于构建用户界面。就其本身而言&#xff0c;Leaflet是一个用于将地图发布到网络的JavaScript 库。这两个工具的组合很简单&#xff0c;允许您创建动态网络地图。在本文中&#xff0c;我们将看到这种组合的一些特征以及一些简单的…

多输入多输出 | Matlab实现OOA-BP鱼鹰算法优化BP神经网络多输入多输出预测

多输入多输出 | Matlab实现OOA-BP鱼鹰算法优化BP神经网络多输入多输出预测 目录 多输入多输出 | Matlab实现OOA-BP鱼鹰算法优化BP神经网络多输入多输出预测预测效果基本介绍程序设计往期精彩参考资料 预测效果 基本介绍 多输入多输出 | Matlab实现OOA-BP鱼鹰算法优化BP神经网络…

java数据结构与算法刷题-----LeetCode367. 有效的完全平方数

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 文章目录 自实现Math.sqrt()函数&#xff1a;牛顿迭代法 自实现Math.sqrt(…

Redis单线程 VS 多线程

一、Redis 为什么选择单线程&#xff1f; 这种说法其实并不严谨&#xff0c;为什么这么说呢&#xff1f; Redis的版本有很多 3.x、4.x、6.x&#xff0c;版本不同架构也不同的&#xff0c;不限定版本问是否单线程也是不太严谨。 版本3.x&#xff0c;最早版本&#xff0c;也就…

项目架构MVC,DDD学习

写在前面 本文一起看下项目架构DDD&#xff0c;MVC相关的内容。 1&#xff1a;MVC 不管我们做什么项目&#xff0c;自己想想其实只是做了三件事&#xff0c;如下&#xff1a; 其实&#xff0c;这三件事完全在一个类中做完也可以可以正常把项目完成的&#xff0c;就像下面这…

【MacBook系统homebrew镜像记录】

安装 使用Homebrew 国内源安装脚本,贼方便&#xff1a; /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)"切换至清华大学镜像源&#xff1a; 命令合并&#xff1a; 分别切换了 brew.git、 homebrew-core.git、 homebrew-…

逆向案例十二——看准网企业信息json格式的信息

网址&#xff1a;【全国公司排行|排名榜单|哪家好】-看准网 打开开发者工具——刷新——网络——XHR——下滑页面加载新的页面——找到数据包 发现参数加密&#xff0c;返回的数据也进行了加密 按关键字在下方搜索 kiv进入第一个js文件 ctrlf打开文件里面的搜索框继续搜kiv找到…