目录
01背包理论基础
01背包问题描述
01背包解法
二维数组
一维数组
算法题
Leetcode 416. 分割等和子集
个人思路
解法
动态规划
01背包理论基础
不同的背包种类,虽然有那么多中南背包,但其中01背包和完全背包是重中之重;
01背包问题描述
有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
例子:背包最大重量为4。
物品为:
重量 | 价值 | |
---|---|---|
物品0 | 1 | 15 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
01背包解法
二维数组
动规五部曲
1.确定dp数组以及下标的含义
使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。
2.确定递推公式
再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。那么可以有两个方向推出来dp[i][j],
- 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
- 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
3.dp数组如何初始化
初始化时一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。
首先从dp[i][j]的定义出发,背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。
dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。
那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。
当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。
其他下标初始为什么数值都可以,因为都会被覆盖。初始-1,初始-2,初始100,都可以!
如图:
4.确定遍历顺序
在如下图中,一共有两个遍历的维度:物品与背包重量
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。
dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:
再来看看先遍历背包,再遍历物品呢,如图:
虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!但先遍历物品再遍历背包这个顺序更好理解.
5.举例推导dp数组
对应的dp数组的数值,如图:
一维数组
在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。
这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。
dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
动规五部曲分析如下:
1.确定dp数组的定义
在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
2.一维dp数组的递推公式
dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。
dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])
此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,
所以递归公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
3.一维dp数组如何初始化
dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。
因为dp数组在推导的时候一定是取价值最大的数,所以非0下标都初始化为0就可以了。这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了。
4.一维dp数组遍历顺序
for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}
与二维dp不同的是一维dp遍历的时候是倒序遍历,背包是从大到小。倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次.
举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15
如果正序遍历
dp[1] = dp[1 - weight[0]] + value[0] = 15
dp[2] = dp[2 - weight[0]] + value[0] = 30
此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。
倒序就是先算dp[2]
dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)
dp[1] = dp[1 - weight[0]] + value[0] = 15
所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。
而对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖,所以不用倒序。
还有就是一维DP只能是先遍历物品嵌套遍历背包容量,因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。
5.举例推导dp数组
一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:
算法题
Leetcode 416. 分割等和子集
题目链接:416. 分割等和子集
大佬视频讲解:分割等和子集视频讲解
个人思路
这道题可以化成01背包问题,等和子集的和就是背包容量,然后按照01背包的思路去解就好
解法
动态规划
题要求集合里能否出现总和为 sum / 2 的子集。
确定如下四点,把01背包问题套到本题
- 背包的体积为sum / 2
- 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
- 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
- 背包中每一个元素是不可重复放入。
动规五部曲:
1.确定dp数组以及下标的含义
dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。
那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。
2.确定递推公式
01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。
所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
3.dp数组如何初始化
从dp[j]的定义来看,首先dp[0]一定是0。
本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。
4.确定遍历顺序
这里使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!
5.举例推导dp数组
dp[j]的数值一定是小于等于j的。
如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j。
用例1,输入[1,5,11,5] 为例,如图:
class Solution {public boolean canPartition(int[] nums) {if(nums == null || nums.length == 0) return false;int n = nums.length;int sum = 0;for(int num : nums) {sum += num;}//总和为奇数,不能平分if(sum % 2 != 0) return false;int target = sum / 2;int[] dp = new int[target + 1];for(int i = 0; i < n; i++) {for(int j = target; j >= nums[i]; j--) {//物品 i 的重量是 nums[i],其价值也是 nums[i]dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);}//剪枝一下,每一次完成内层的for-loop,立即检查是否dp[target] == targetif(dp[target] == target)return true;}return dp[target] == target;}
}
时间复杂度:O(n^2);(嵌套for循环遍历n个数)
空间复杂度:O( n);(存储一个长度为n+1的dp数组)
二维数组版本
class Solution {public boolean canPartition(int[] nums) {int n = nums.length;//数组长度if (n < 2) {return false;}int sum = 0, maxNum = 0;for (int num : nums) {sum += num;maxNum = Math.max(maxNum, num);}if (sum % 2 != 0) {//和为偶数才能评分为两半return false;}int target = sum / 2;//目标值即背包容量//maxNum以外的所有元素之和一定小于 target因此不可能将数组分割成元素和相等的两个子集if (maxNum > target) {return false;}boolean[][] dp = new boolean[n][target + 1];//二维dp数组for (int i = 0; i < n; i++) {//初始化数组dp[i][0] = true;}dp[0][nums[0]] = true;for (int i = 1; i < n; i++) {//先物品int num = nums[i];for (int j = 1; j <= target; j++) {if (j >= num) {dp[i][j] = dp[i - 1][j] | dp[i - 1][j - num];} else {dp[i][j] = dp[i - 1][j];}}}return dp[n - 1][target];}
}
时间复杂度:O(n^2);(嵌套for循环遍历n个数)
空间复杂度:O( n^2);(dp二维数组)
以上是个人的思考反思与总结,若只想根据系列题刷,参考卡哥的网址代码随想录算法官网