数据分享|R语言逻辑回归、线性判别分析LDA、GAM、MARS、KNN、QDA、决策树、随机森林、SVM分类葡萄酒交叉验证ROC...

全文链接:http://tecdat.cn/?p=27384

在本文中,数据包含有关葡萄牙“Vinho Verde”葡萄酒的信息点击文末“阅读原文”获取完整代码数据

介绍

该数据集(查看文末了解数据获取方式)有1599个观测值和12个变量,分别是固定酸度、挥发性酸度、柠檬酸、残糖、氯化物、游离二氧化硫、总二氧化硫、密度、pH值、硫酸盐、酒精和质量。固定酸度、挥发性酸度、柠檬酸、残糖、氯化物、游离二氧化硫、总二氧化硫、密度、pH、硫酸盐和酒精是自变量并且是连续的。质量是因变量,根据 0 到 10 的分数来衡量。

相关视频

探索性分析

总共有 855 款葡萄酒被归类为“好”品质,744 款葡萄酒被归类为“差”品质。固定酸度、挥发性酸度、柠檬酸、氯化物、游离二氧化硫、总二氧化硫、密度、硫酸盐和酒精度与葡萄酒质量显着相关( t 检验的 P 值 < 0.05),这表明了重要的预测因子。我们还构建了密度图来探索 11 个连续变量在“差”和“好”葡萄酒质量上的分布。从图中可以看出,品质优良的葡萄酒在PH方面没有差异,而不同类型的葡萄酒在其他变量上存在差异,这与t检验结果一致。

na.oit() %>muate(qal= ase_hen(ality>5 ~good", quaity <=5 ~ "poor")) %>%muate(qua= s.fatrqual)) %>%dpeme1 <- rsparentTme(trans = .4)plot = "density", pch = "|",auto.key = list(columns = 2))

1ae00e1d8683c3ec36a1c76b60725a9c.png

图 1. 葡萄酒品质和预测特征之间的描述图。
表 1. 优质和劣质葡萄酒的基本特征。

# 在表1中创建一个我们想要的变量b1 <- CeatTableOe(vars  litars, straa = ’qual’ da winetab

1c3caab79dc2402f64547d786cdbac76.png


点击标题查阅往期内容

a0aaff088bea0ae8a1e0da630f0259fd.jpeg

R语言主成分分析(PCA)葡萄酒可视化:主成分得分散点图和载荷图

outside_default.png

左右滑动查看更多

outside_default.png

01

outside_default.png

02

outside_default.png

03

outside_default.png

04

outside_default.png

模型

我们随机选择 70% 的观测值作为训练数据,其余的作为测试数据。所有 11 个预测变量都被纳入分析。我们使用线性方法、非线性方法、树方法和支持向量机来预测葡萄酒质量的分类。对于线性方法,我们训练(惩罚)逻辑回归模型和线性判别分析(LDA)。逻辑回归的假设包括相互独立的观察结果以及自变量和对数几率的线性关系。LDA 和 QDA 假设具有正态分布的特征,即预测变量对于“好”和“差”的葡萄酒质量都是正态分布的。对于非线性模型,我们进行了广义加性模型(GAM)、多元自适应回归样条(MARS)、KNN模型和二次判别分析(QDA)。对于树模型,我们进行了分类树和随机森林模型。还执行了具有线性和径向内核的 SVM。我们计算了模型选择的 ROC 和准确度,并调查了变量的重要性。10 折交叉验证 (CV) 用于所有模型。

inTrai <- cateatPariti(y  winequal, p = 0.7, lit =FASE)traiData <- wine\[inexTr, teDt <wi\[-idxTrain,\]

线性模型 多元逻辑回归显示,在 11 个预测因子中,挥发性酸度、柠檬酸、游离二氧化硫、总二氧化硫、硫酸盐和酒精与葡萄酒质量显着相关(P 值 < 0.05),解释了总方差的 25.1%。酒质。将该模型应用于测试数据时,准确度为 0.75(95%CI:0.71-0.79),ROC 为 0.818,表明数据拟合较好。在进行惩罚性逻辑回归时,我们发现最大化ROC时,最佳调优参数为alpha=1和lambda=0.00086,准确度为0.75(95%CI:0.71-0.79),ROC也为0.818。由于 lambda 接近于零且 ROC 与逻辑回归模型相同,因此惩罚相对较小,

但是,由于逻辑回归要求自变量之间存在很少或没有多重共线性,因此模型可能会受到 11 个预测变量之间的共线性(如果有的话)的干扰。至于LDA,将模型应用于测试数据时,ROC为0.819,准确率为0.762(95%CI:0.72-0.80)。预测葡萄酒品质的最重要变量是酒精度、挥发性酸度和硫酸盐。与逻辑回归模型相比,LDA 在满足正常假设的情况下,在样本量较小或类别分离良好的情况下更有帮助。

### 逻辑回归cl - tranControlmehod =cv" number  10,summayFunio = TRUE)set.seed(1)moel.gl<- train(x = tainDaa %>% dpyr::selct(-ual),y = trainDaa$qualmetod "glm",metic = OC",tContrl = crl# 检查预测因素的重要性summary(odel.m)

outside_default.png

# 建立混淆矩阵tetred.prb <- rdct(mod.gl, newdat = tstDattye = "robtest.ped <- rep("good", length(pred.prconfusionMatrix(data = as.factor(test.pred),

outside_default.png

outside_default.png

# 绘制测试ROC图oc.l <- roc(testa$al, es.pr.rob$god)

outside_default.png

## 测试误差和训练误差er.st. <- mean(tett$qul!= tt.pred)tranped.obgl <-pric(moel.lmnewda= taiDaa,type = "robmoe.ln <-tai(xtraDa %>% dlyr:seec-qal),y = traDmethd = "met",tueGid = lGrid,mtc = "RO",trontrol  ctl)plotodel.gl, xTras =uction() lg(x)

outside_default.png

#选择最佳参数mol.mn$bestune

outside_default.png

# 混淆矩阵tes.red2 <- rp"good" ngth(test.ed.prob2$good))tst.red2\[tespre.prob2$good < 0.5\] <- "poorconuionMatridata = as.fcto(test.prd2),

outside_default.png

outside_default.png

outside_default.png

outside_default.png

outside_default.png

非线性模型 在 GAM 模型中,只有挥发性酸度的自由度等于 1,表明线性关联,而对所有其他 10 个变量应用平滑样条。

结果表明,酒精、柠檬酸、残糖、硫酸盐、固定酸度、挥发性酸度、氯化物和总二氧化硫是显着的预测因子(P值<0.05)。

总的来说,这些变量解释了葡萄酒质量总变化的 39.1%。使用测试数据的混淆矩阵显示,GAM 的准确度为 0.76(95%CI:0.72-0.80),ROC 为 0.829。

MARS 模型表明,在最大化 ROC 时,我们在 11 个预测变量中包含了 5 个项,其中 nprune 等于 5,度数为 2。这些预测变量和铰链函数总共解释了总方差的 32.2%。根据 MARS 输出,三个最重要的预测因子是总二氧化硫、酒精和硫酸盐。

将 MARS 模型应用于测试数据时,准确度为 0.75(95%CI:0.72,0.80),ROC 为 0.823。我们还执行了 KNN 模型进行分类。当 k 等于 22 时,ROC 最大化。KNNmodel 的准确度为 0.63(95%CI:0.59-0.68),ROC 为 0.672。

QDA模型显示ROC为0.784,准确率为0.71(95%CI:0.66-0.75)。预测葡萄酒质量的最重要变量是酒精、挥发性酸度和硫酸盐。59-0.68),ROC 为 0.672。QDA模型显示ROC为0.784,准确率为0.71(95%CI:0.66-0.75)。

预测葡萄酒质量的最重要变量是酒精、挥发性酸度和硫酸盐。59-0.68),ROC 为 0.672。QDA模型显示ROC为0.784,准确率为0.71(95%CI:0.66-0.75)。预测葡萄酒质量的最重要变量是酒精、挥发性酸度和硫酸盐。

GAM 和 MARS 的优点是这两个模型都是非参数模型,并且能够处理高度复杂的非线性关系。具体来说,MARS 模型可以在模型中包含潜在的交互作用。然而,由于模型的复杂性、耗时的计算和高度的过拟合倾向是这两种模型的局限性。对于 KNN 模型,当 k 很大时,预测可能不准确。

### GAMse.see(1)md.gam<- ran(x =trainDta %%dplr::slect(-qal),y = traiat$ual,thod = "am",metri = "RO",trCotrol = ctrl)moel.gm$finlMdel

outside_default.png

summary(mel.gam)

outside_default.png

# 建立混淆矩阵test.pr.pob3 - prdict(mod.ga nwdata =tstData,tye = "prb")testped3 - rep"good" legt(test.predpob3$goo))testprd3\[test.predprob3good < 0.5\] <- "pooreferetv = "good")

outside_default.png

outside_default.png

outside_default.png

outside_default.png

model.mars$finalModel

outside_default.png

vpmodl.rs$inlodel)

outside_default.png

outside_default.png

outside_default.png

# 绘制测试ROC图ocmas <- roctestataqua, tes.pred.rob4god)## Stting level: conrol = god, case= poor## Settig diectio: cntrols> caseplot(ro.mars legac.axes = TRE, prin.auc= RUE)plot(soothroc.mars), co = 4, ad =TRUE)

outside_default.png

errr.tria.mas <-man(tainat$qul ! trai.red.ars)### KNNGrid < epa.gri(k seq(from = 1, to = 40, by = 1))seted(1fknnrainqual ~.,dta = trnData,mthd ="knn"metrrid = kid)ggplot(fitkn

outside_default.png

outside_default.png

# 建立混淆矩阵ts.re.po7 < prdi(ft.kn, ewdt = estDaatype = "prb"

outside_default.png

outside_default.png

### QDAseteed1)%>% pyr:c-ual),y= trataqethod "d"mric = "OC",tContol =ctl)# 建立混淆矩阵tet.pprob <-pedct(mol.da,nedaa = teDta,te = "pb")testred6<- rep(o", leng(est.ped.pob6$goo))

outside_default.png

outside_default.png

outside_default.png

树方法

基于分类树,最大化AUC时最终的树大小为41。测试错误率为 0.24,ROC 为 0.809。此分类树的准确度为 0.76(95%CI:0.72-0.80)。我们还进行了随机森林方法来研究变量的重要性。因此,酒精是最重要的变量,其次是硫酸盐、挥发性酸度、总二氧化硫、密度、氯化物、固定酸度、柠檬酸、游离二氧化硫和残糖。pH 是最不重要的变量。对于随机森林模型,测试错误率为 0.163,准确率为 0.84(95%CI:0.80-0.87),ROC 为 0.900。树方法的一个潜在限制是它们对数据的变化很敏感,即数据的微小变化可能引起分类树的较大变化。

# 分类ctr <- tintol(meod ="cv", number = 10,smmryFuton= twoClassSmaet.se(1rart_grid = a.fra(cp = exp(eq(10,-, len =0)))clsste = traqua~., rainDta,metho ="rprttueGrid = patid,trCtrl  cr)ggt(class.tee,highight =TRE)

outside_default.png

outside_default.png

## 计算测试误差rpartpred = icla.te edta =testata, ye = "aw)te.ero.sree = mean(testa$a !=rartpre)rprred_trin  reic(ss.tre,newdta = raiata, tye  "raw")# 建立混淆矩阵teste.pob8 <-rdic(cste, edata =tstData,pe = "po"tet.pd8 - rpgod" legthtetred.rb8d))

outside_default.png

outside_default.png

# 绘制测试ROC图ro.r <-oc(testaual, tstedrob$od)pot(rc.ctreegy.axes  TU pit.a = TRE)plo(ooth(c.tre, col= 4, ad = TRE

outside_default.png

# 随机森林和变量重要性ctl <traontr(mthod= "cv, numbr = 10,clasPos = RUEoClssSummry)rf.grid - xpa.gr(mt = 1:10,spltrule "gini"min.nd.sie =seq(from = 1,to  12, by = 2))se.sed(1)rf.fit <- inqualmthd= "ranger",meric = "ROC",= ctrlgglt(rf.it,hiliht  TRE)

outside_default.png

scle.ermutatin.iportace  TRU)barplt(sort(rangr::imoranc(random

outside_default.png

6fdc315119dea3366fcef7e8dd397aa3.png

a3fa479e93e62a9992a46166013f4612.png

4f274d2df2a3f0deec694e27088b0458.png

支持向量机

我们使用带有线性核的 SVM,并调整了成本函数。我们发现具有最大化 ROChad 成本的模型 = 0.59078。该模型的 ROC 为 0.816,准确度为 0.75(测试误差为 0.25)(95%CI:0.71-0.79)。质量预测最重要的变量是酒精;挥发性酸度和总二氧化硫也是比较重要的变量。如果真实边界是非线性的,则具有径向核的 SVM 性能更好。

st.seed(svl.fi <- tain(qual~ . ,data = trainDatamehod= "mLar2",tueGri = data.frae(cos = ep(seq(-25,ln = 0))

9e6a0626d2f584de5409ceea6c69dd4b.png

74f492d5205efb613965b519f5e3b930.png

201ed3ce1b0e77303515ba064ea591fe.png

2c9caac13dc9d5ddf8ff98da7d7d8b14.png

474ea07d9d4d315580efb2786635b1f0.png

## 带径向核的SVMsvmr.grid  epand.gid(C = epseq(1,4,le=10)),iga = expsq(8,len=10)))svmr.it<- tan(qual ~ .,da = taiDataRialSigma",preProcess= c("cer" "scale"),tunnrol = c)

a55bbc6dce8f62d13e8357ccc0b4b0fc.png

982e9d5e6f109d0c49b084a75c28678e.png

aaa48b187722d55931568a3a9c2ce0f8.png

4c71be1c32fea1cabfe1dc8ec3334196.png

模型比较

模型建立后,我们根据所有模型的训练和测试性能进行模型比较。下表显示了所有模型的交叉验证分类错误率和 ROC。结果中,随机森林模型的 AUC 值最大,而 KNN 最小。因此,我们选择随机森林模型作为我们数据的最佳预测分类模型。基于随机森林模型,酒精、硫酸盐、挥发性酸度、总二氧化硫和密度是帮助我们预测葡萄酒质量分类的前 5 个重要预测因子。由于酒精、硫酸盐和挥发性酸度等因素可能决定葡萄酒的风味和口感,所以这样的发现符合我们的预期。在查看每个模型的总结时,我们意识到KNN模型的AUC值最低,测试分类错误率最大,为0.367。其他九个模型的 AUC 值接近,约为 82%。

rsam = rsmes(list(summary(resamp)

744fca1ecf6e7d7de26e366429aec8b7.png

3de07648e383215780439e292034659d.png

23cf6995c32d1e8cd5ef5d29e4643098.png

comrin = sumaryes)$satitics$ROr_quare  smary(rsamp)saisis$sqrekntr::ableomris\[,1:6\])

26164f6bd0c74e326b768f2011645195.png

bpot(remp meic = "ROC")

529c792f0513da813971ee5eb0e360cd.png

f<- datafram(dl\_Name, TainError,Test\_Eror, Tes_RC)knir::abe(df)

9c55bfbf8fdd8e557abc4080a9fc97b7.png

结论

模型构建过程表明,在训练数据集中,酒精、硫酸盐、挥发性酸度、总二氧化硫和密度是葡萄酒质量分类的前 5 个重要预测因子。我们选择了随机森林模型,因为它的 AUC 值最大,分类错误率最低。该模型在测试数据集中也表现良好。因此,这种随机森林模型是葡萄酒品质分类的有效方法。

数据获取

在下面公众号后台回复“葡萄酒数”,可获取完整数据。


9a4e0f0f43f868f23283a260986b567a.png

点击文末“阅读原文”

获取全文完整资料。

本文选自《R语言惩罚逻辑回归、线性判别分析LDA、广义加性模型GAM、多元自适应回归样条MARS、KNN、二次判别分析QDA、决策树、随机森林、支持向量机SVM分类优质劣质葡萄酒十折交叉验证和ROC可视化》。

325baf8a84e6017ac3d51ee078ed8492.jpeg

本文中的葡萄酒数据分享到会员群,扫描下面二维码即可加群!

7b34a897378f25a1de7d9bbb1f578a14.png

514ca068edde98ac64850c9aa705f798.jpeg

49aafa113fba5535327bdbe9d1da4620.png

点击标题查阅往期内容

R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据

逻辑回归Logistic模型原理R语言分类预测冠心病风险实例

数据分享|用加性多元线性回归、随机森林、弹性网络模型预测鲍鱼年龄和可视化

R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)

Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例

R语言Bootstrap的岭回归和自适应LASSO回归可视化

R语言Lasso回归模型变量选择和糖尿病发展预测模型

R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析

基于R语言实现LASSO回归分析

R语言用LASSO,adaptive LASSO预测通货膨胀时间序列

R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析

R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例

Python中的Lasso回归之最小角算法LARS

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现

R语言实现LASSO回归——自己编写LASSO回归算法

R使用LASSO回归预测股票收益

python使用LASSO回归预测股票收益

941c2bf7c3892966a1f2d7ac13cfbec7.png

ae6b16f11facd3a23ea1ba8104f894b5.jpeg

ed9de8eeb7f634fd0a6f76723ef09b1d.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/79800.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pdf添加水印

给pdf文件添加水印 引入依赖 <dependency><groupId>com.itextpdf</groupId><artifactId>itextpdf</artifactId><version>5.5.13.3</version></dependency>添加水印 package com.it2.pdfdemo02.util;import com.itextpdf.tex…

用 Pytest+Allure 生成漂亮的 HTML 图形化测试报告

本篇文章将介绍如何使用开源的测试报告生成框架 Allure 生成规范、格式统一、美观的测试报告。 通过这篇文章的介绍&#xff0c;你将能够&#xff1a; 将 Allure 与 Pytest 测试框架相结合&#xff1b; 如何定制化测试报告内容 执行测试之后&#xff0c;生成 Allure 格式的测…

免费和开源的机器翻译软件LibreTranslate

什么是 LibreTranslate &#xff1f; LibreTranslate 免费开源机器翻译 API&#xff0c;完全自托管。与其他 API 不同&#xff0c;它不依赖于 Google 或 Azure 等专有提供商来执行翻译。它的翻译引擎由开源 Argos Translate 库提供支持。 这个软件在 2022 年 3 月的时候折腾过&…

【图论】有向图的强连通分量

算法提高课笔记 文章目录 理论基础SCC板子 例题受欢迎的牛题意思路代码 学校网络题意思路代码 最大半连通子图题意思路代码 银河题意思路代码 理论基础 什么是连通分量&#xff1f; 对于一个有向图&#xff0c;分量中任意两点u&#xff0c;v&#xff0c;必然可以从u走到v&am…

Web安全与攻防

Web安全概述 在Internet大众化及Web技术飞速演变的今天&#xff0c;在线安全所面临的挑战日益严峻。伴随着在线信息和服务的可用性的提升&#xff0c;以及基于Web的攻击和破坏的增长&#xff0c;安全风险达到了前所未有的高度。Web安全可以从以下三个方面进行考虑&#xff1a;…

Jmeter系列-控制器Controllers的介绍(8)

Controllers 简介 JMeter是一款功能强大的性能测试工具&#xff0c;而控制器是JMeter中非常重要的一个组件。控制器用于控制测试计划的执行流程&#xff0c;可以根据需求来控制线程的启动、停止、循环等操作。 Jmeter有两种类型的控制器&#xff1a;Samplers&#xff08;取样…

【Linux】动静态库

目录 1.静态库2.动态库3.静态库的使用区别总结 1.静态库 我们在linux中已经帮我们下载好了C和C所需要的各种库&#xff0c;库也是文件&#xff0c;实际上就是各种接口的实现&#xff0c;我们在使用系统提供的譬如printf等函数时&#xff0c;就是使用系统中的库文件。使用一个库…

驱动开发,IO多路复用实现过程,epoll方式

1.框架图 被称为当前时代最好用的io多路复用方式&#xff1b; 核心操作&#xff1a;一棵树&#xff08;红黑树&#xff09;、一张表&#xff08;内核链表&#xff09;以及三个接口&#xff1b; 思想&#xff1a;&#xff08;fd代表文件描述符&#xff09; epoll要把检测的事件…

Vue Router入门:为Vue.js应用添加导航

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

【Unity】ShaderGraph应用(浮动气泡)

【Unity】ShaderGraph应用(浮动气泡) 实现效果 一、实现的方法 1.使用节点介绍 Position&#xff1a;获取模型的顶点坐标 Simple Noise:简单的噪声&#xff0c;用于计算顶点抖动 Fresnel Effect&#xff1a;菲涅耳效应&#xff0c;用于实现气泡效果 计算用节点 Add&…

jmeter生成html格式接口自动化测试报告

jmeter自带执行结果查看的插件&#xff0c;但是需要在jmeter工具中才能查看&#xff0c;如果要向领导提交测试结果&#xff0c;不够方便直观。 笔者刚做了这方面的尝试&#xff0c;总结出来分享给大家。 这里需要用到ant来执行测试用例并生成HTML格式测试报告。 一、ant下载安…

XSS入门 XSS Challenges

level1(直接注入) <script>alert(xss)</script>level2(双引号闭合标签) 测试 <sCr<ScRiPt>IPT>OonN"\/(hrHRefEF)</sCr</ScRiPt>IPT>发现<>"被转换&#xff0c;构造新的语句 "><script>alert(/xss/)</…

Keepalived 高可用(附带配置实例,联动Nginx和LVS)

Keepalived 一、Keepalived相关知识点概述1.1 单服务的风险&#xff08;单点故障问题&#xff09;1.2 一个合格的集群应该具备的特性1.3 VRRP虚拟路由冗余协议1.4 健康检查1.5 ”脑裂“现象 二、Keepalived2.1 Keepalived是什么&#xff1f;2.2 Keepalived体系主要模块及其作用…

任意文件下载

原理&#xff1a; 文件查看或文件下载功能&#xff0c;不做限制&#xff0c;恶意用户就能够查看或下载任意敏感文件&#xff0c;这就是文件查看与下载漏洞。 一般链接形式: download.php?path down.php?file data.php?file download.php?filename 或者包含参数: &Sr…

数据结构:树的概念和结构

文章目录 1. 树的概念2. 树的结构3. 树的相关概念4. 树的表示孩子表示法双亲表示法孩子兄弟表示法 5. 树在实际中的应用 1. 树的概念 树是一种非线性的数据结构,它是由 n (n > 0)个有限结点组成一个具有层次关系的. 把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝…

.360勒索病毒和.halo勒索病毒数据恢复|金蝶、用友、ERP等数据恢复

导言&#xff1a; 随着数字化时代的持续发展&#xff0c;网络安全威胁也变得前所未有地复杂和难以应对。在这个充满挑战的网络环境中&#xff0c;勒索病毒已经成为了一种极为危险和破坏性的威胁。最近引起广泛关注的是.360勒索病毒&#xff0c;一种可怕的恶意软件&#xff0c;…

Python实现自主售卖机

1 问题 在python中我们常常使用到条件判断&#xff0c;if语句时常见的条件判断语句之一。那么如何使用if语句实现根据情况自动选择商品进行售卖呢&#xff1f; 2 方法 根据if语句执行时从上往下执行的特点&#xff0c;使用if语句、dict和list来实现整个流程。 代码清单 1 drink…

mysql 快速上传数据

快速上传数据 这个应该是比inset into values更快的插入数据的办法了。 不过要求挺苛刻的&#xff0c;数据要整理成和表格一致&#xff0c;也就是说每条数据都是完整的一条&#xff0c;而不是一部分。 下面的示例我以***为分割符划分字段&#xff0c;以 \n来分割每条数据。 LO…

python连接mysql数据库的练习

一、导入pandas内置的sqlite3模块&#xff0c;连接的信息&#xff1a;ip地址是本机, 端口号port 是3306, 用户user是root, 密码password是123456, 数据库database是lambda-xiaozhang import pymysql# 打开数据库连接&#xff0c;参数1&#xff1a;主机名或IP&#xff1b;参数…

回顾多线程

1.线程有几种状态 public enum State {//新生NEW,//运行RUNNABLE,//阻塞BLOCKED,//等待WAITING,//超时等待TIMED_WAITING,//终止TERMINATED;} 2.wait和sleep的区别 1.来自不同的类 wait>Object类 sleep > Thread类 2.关于锁的释放 wait 会释放锁&#xff0c; s…