序列超图的下一项推荐 笔记

1 Title

        Next-item Recommendation with Sequential Hypergraphs(Jianling Wang、Kaize Ding、Liangjie Hong、Huan Liu、James Caverlee)【SIGIR 2020】

2 Conclusion

       This study explores the dynamic meaning of items in realworld scenarios and propose a novel next-item recommendation framework empowered by sequential hypergraphs to incorporate the short-term item correlations for dynamic item embedding. With the stacking of hypergraph convolution networks, a residual gating and the fusion layer, the proposed model is able to provide more accurate modeling of user preferences, leading to improved performance compared to the state-of-the-art in predicting user’s next action for both ecommerce (Amazon and Etsy) and information sharing platform (Goodreads).

3 Good Sentences

        1、A critical issue is how items are treated in such models. Specifically, for a certain time period in next-item recommendation, we adopt the view that the meaning of an item can be revealed by the correlations defined by user interactions in the short term.(The most important problem of this study wants to solve)
        2、However, it is non-trivial to extract expressive item semantics the item-correlation hypergraph. On the one hand, the item correlations encoded by the hyperedges are no longer dyadic (pairwise), but rather triadic, tetradic or of a higher-order,on the other hand, the item semantics could propagate over multiple hops.(Why choose HyperGraph to connect character of users and items)
        3、In summary, relationships between items are changing from the long-term perspective, leading to the change in the semantic meanings of items. Thus we are motivated to exploit the short-term correlations between items while modeling their dynamic patterns for next-item recommendation.(The motivation of this study)


本文提出了HyperRec,这是一个具有顺序超图的新颖端到端框架,以增强下一项推荐。

HyperRec根据时间戳截断用户交互,以构建一系列超图

HYPERREC

HyperRec是一个端到端下一项推荐框架,该框架由顺序超图授权,可以在对随时间和跨用户的动态建模时合并短期项相关性。

问题定义:

        使用集合U来表示N个用户,集合I来表示P个items,集合Q来表示不同的时间戳T,每个t相当于一段period,对于每个用户,按照时间顺序对用户u与之交互的项目列表进行排序,比如L^u=\left \{ \left ( i^u_1,t_1^u \right ),\left ( i^u_2,t_2^u \right ).....\left ( i^u_{|L^u|},t_{|L^u|}^u \right ) \right \}        ,每个小括号表示t时刻用户u与item i进行了交互。项目以一组静态潜在嵌入E=[e_1,e_2.....e_p]开始,其中每一个都是与项目ID相关联的可训练嵌入,但是对于不同用户在不同时间戳不变,下一个项目推荐的目标是预测𝑢在L_u之后会感兴趣的项目。

Sequential Hypergraphs 

        由于用户在短时间内购买的物品是相互关联的,因此在它们之间定义适当的联系至关重要。超图可以利用直接和高阶连接来提取项目之间的短期相关性。同时,一个项目不应该在不同时期被视为离散的,因为它过去的特征可以暗示它未来的特征。

        Short-term Hypergraphs:

                为了捕捉不同时间段的项目相关性,可以基于时间戳将用户-项目交互分成多个子集。G=\left \{ G^{t_1} ,G^{t_2}......G^{t_Q}\right \}代表一系列的超图,而G^{t_n}=\left \{ V^{t_n},\varepsilon ^{t_n},W^{t_n},H^{t_n} \right \}是基于时间段t_n内发生的所有用户-项目交互而构建,V属于I,是节点集,代表时间段内的交互items,\varepsilon属于U,是超边集,代表时间段内交互的users。H是V和\varepsilon的关联矩阵,当超边与节点相关联的时候,H=1否则H=0,W_{\varepsilon \varepsilon }是代表超边\varepsilon权重的对角矩阵。D和B分别代表节点和超边的度矩阵。

Hypergraph Convolution Network (HGCN):看这个[1901.08150] Hypergraph Convolution and Hypergraph Attention (arxiv.org)

简单来说, 超图上的卷积操作可以定义如下:

        \tau代表激活函数(本文采用Relu)P^0表示初始层与第1层之间的可训练权矩阵。然后加入归一化并且转为矩阵表示的形式:

f(\cdot )表示一个超图卷积层用它的一跳邻居更新每个节点的操作。
可以堆叠多个卷积层来递归聚合超图中高阶邻居的信息。在这种超图卷积网络(HGCN)中,𝐿𝑡层的输出可计算为:

Residual Gating:

        为了将前一个时间段的残差信息传播到未来,引入了残差门控,tn时刻第i个项目的初始嵌入可以被表示为:

W_RZ_R为门的变换矩阵和矢量,\sigma是tanh,x_i^{t_n,0}表示在tn时刻之前的第i个item来自最近的超图的动态嵌入,如果之前i没有出现过,那么

Dynamic User Modeling

       Short-term User Intent:

                以聚合每个超边上的动态节点嵌入,以通过以下操作推断每个用户的短期意图。

        Fusion Layer       

                生成用户𝑢和物品𝑖之间的在t_n时刻的交互表示:

e_ix_i^{t_n,L}分别代表项目的静态和动态嵌入,u_u^{t_n}是用户短期意图生成的向量,W𝐹和z是对应的变换矩阵和向量

        Self-attention

                采用自我关注作为基本模型来捕获交互序列中的动态模式      

Preference Prediction:

        预测用户对项目的偏好时,应该同时考虑动态项目嵌入和静态项目嵌入:  

最终损失函数:,𝛿是Sigmoid函数,||\theta ||^2代表L2范式,λ是权重。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/797233.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式:抽象工厂

定义 抽象工厂模式是一种创建型设计模式,它提供了一个接口,用于创建一系列相关或相互依赖的对象,而无需指定它们具体的类。这种模式特别适用于处理产品族,但在不可能修改的情况下扩展产品族是困难的。 应用场景 抽象工厂模式通…

RocketMQ的简单使用

这里需要创建2.x版本的springboot项目 导入依赖 <dependencies><dependency><groupId>org.apache.rocketmq</groupId><artifactId>rocketmq-spring-boot-starter</artifactId><version>2.2.3</version></dependency>&…

基于SSM+Jsp+Mysql的人事管理系统

开发语言&#xff1a;Java框架&#xff1a;ssm技术&#xff1a;JSPJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包…

CV最新论文|4月5日 arXiv更新论文合集

以下内容由马拉AI整理&#xff0c;今天为大家带来4月5日 arXiv 计算机视觉和模式识别相关论文&#xff1a; 1、Know Your Neighbors: Improving Single-View Reconstruction via Spatial Vision-Language Reasoning 了解你的邻居&#xff1a;通过空间视觉-语言推理改进单视图…

深入理解JVM的内存结构及GC机制(2)

虚拟机栈占用的是操作系统内存&#xff0c;每个线程对应一个虚拟机栈&#xff0c;它是线程私有的&#xff0c;生命周期和线程一样&#xff0c;每个方法被执行时产生一个栈帧&#xff08;Statck Frame&#xff09;&#xff0c;栈帧用于存储局部变量表、动态链接、操作数和方法出…

大语言模型落地的关键技术:RAG

1、什么是RAG&#xff1f; RAG 是检索增强生成&#xff08;Retrieval-Augmented Generation&#xff09;的简称&#xff0c;是当前最火热的大语言模型应用落地的关键技术&#xff0c;主要用于提高语言模型的效果和准确性。它结合了两种主要的NLP方法&#xff1a;检索&#xff…

Anaconda 安装pytorch 问题

问题 clobbererror: this transaction has incompatible packages due to a shared path. packages: nvidia/win-64::cuda-cupti-11.8.87-0, nvidia/win-64::cuda-nvtx-11.8.86-0 path: ‘metadata_conda_debug.yaml’ 打开 cmd 输入 nvida-smi &#xff0c;可以看见本机的NI…

post请求搜索功能爬虫

<!--爬虫仅支持1.8版本的jdk--> <!-- 爬虫需要的依赖--> <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactId>httpclient</artifactId> <version>4.5.2</version> </dependency>…

2023年下半年网络工程师上午真题及答案解析

1.当计算机突然断电时&#xff0c;( )中存储的信息会丢失。 A.光盘 B.ROM C.RAM D.硬盘 2.进程的状态有就绪态、运行态、阻塞态&#xff0c;其中( )的变化是不可能直接发生的。 A.就绪态到运行态 B.阻塞态到就绪态 C.运行态到阻塞态 D.阻塞态到运行态 3.分…

老板们注意了,AI可能在悄悄威胁你的工作

前天,科技新闻大佬The Register发了一篇文章,说的是AI在科研领域的管理角色越来越大,可能会让管理岗位变得过时,听起来是不是有点儿疯狂? ESMT Berlin的研究小伙伴们发现,AI能够以更大的规模和效率来管理研究项目,比如审查科学文献和预测创新化合物等等,而不是取代人类…

docker用来解决什么问题

2024年4月6日&#xff0c;周六下午 Docker用于解决软件开发、部署和运行过程中的一系列问题&#xff0c;包括但不限于以下几点&#xff1a; 环境一致性问题&#xff1a;在软件开发和部署过程中&#xff0c;由于不同环境的配置差异&#xff0c;经常会出现“在我的电脑上可以运行…

漂亮国的无人餐厅的机器人骚操作

导语 大家好&#xff0c;我是智能仓储物流技术研习社的社长&#xff0c;你的老朋友&#xff0c;老K。行业群 新书《智能物流系统构成与技术实践》 知名企业 读者福利&#xff1a; &#x1f449;抄底-仓储机器人-即买即用-免调试 智能制造-话题精读 1、西门子、ABB、汇川&#x…

线性结构与非线性结构

线性结构与非线性结构 数据结构包括:线性结构和非线性结构。 线性结构 1)线性结构作为最常用的数据结构&#xff0c;其特点是数据元素之间存在一对一的线性关系。 2)线性结构有两种不同的存储结构&#xff0c;即顺序存储结构和链式存储结构。 顺序存储的线性表称为顺序表&a…

react api:createContext

使用 createContext 创建组件能够提供与读取的 上下文&#xff08;context&#xff09;。 ** const SomeContext createContext(defaultValue) 在任意组件外调用 createContext 创建一个上下文。 import { createContext } from ‘react’; const ThemeContext createConte…

P2036 [COCI2008-2009 #2] PERKET(DFS)

# [COCI2008-2009 #2] PERKET ## 题目描述 Perket 是一种流行的美食。为了做好 Perket&#xff0c;厨师必须谨慎选择食材&#xff0c;以在保持传统风味的同时尽可能获得最全面的味道。你有 n 种可支配的配料。对于每一种配料&#xff0c;我们知道它们各自的酸度 s 和苦度 b。…

深入探讨string类的奥秘

标题&#xff1a;深入探索C String类的奥秘 一、String类简介 在C编程中&#xff0c;字符串处理是非常常见的一种操作。C标准库为我们提供了一种名为String的类&#xff0c;用于处理字符串。String类在头文件中定义&#xff0c;它提供了许多成员函数和友元函数&#xff0c;使…

大模型日报2024-04-07

大模型日报 2024-04-07 大模型资讯 EURUS&#xff1a;针对推理优化的大型语言模型套件&#xff0c;取得开源模型多项基准测试的最先进成果 摘要: EURUS是一套针对推理能力进行优化的大型语言模型&#xff08;LLMs&#xff09;&#xff0c;在多项多样化的基准测试中取得了最先进…

算法练习----力扣每日一题------7

原题链接 1483. 树节点的第 K 个祖先 - 力扣&#xff08;LeetCode&#xff09; 题目解析 要求编写一个TreeAncestor类&#xff0c;需要为其写两个函数。该类是一个无规律的多叉树&#xff0c;多叉树的父节点一定是0号节点 1. TreeAncestor(int n, vector<int>&…

Android Hal service compatibility matrix

hal service 1&#xff09;增加声明xml文件 <manifest version"1.0" type"framework"><hal format"aidl"><name>ltd.faw.native_log_service</name><interface><name>INativeLogServiceInterface</name…

学习vue3第十四节 Teleport 内置组件介绍

<Teleport></Teleport> 作用目的&#xff1a; 用于将指定的组件或者元素传送到指定的位置&#xff1b; 通常是自定义的全局通用弹窗&#xff0c;绑定到 body 上&#xff0c;而不是在当前元素上面&#xff1b; 使用方法&#xff1a; 接收两个参数 to: 要将目标传…