初识二叉树和二叉树的基本操作

目录

一、树 

 1.什么是树

2. 与树相关的概念

二、二叉树 

1.什么是二叉树

2.二叉树特点

3.满二叉树与完全二叉树

4.二叉树性质

 相关题目:

5.二叉树的存储 

6.二叉树的遍历和基本操作 

 二叉树的遍历

二叉树的基本操作


一、树 

 1.什么是树

  • 子树是不相交的;
  • 除了根结点外,每个结点有且仅有一个父结点
  • 一棵N个结点的树有N-1条边。 

树:                                                    非树: 

       

2. 与树相关的概念

  • 结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6
  • 树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6
  • 叶子结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等节点为叶结点
  • 双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
  • 孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
  • 根结点:一棵树中,没有双亲结点的结点;如上图:A
  • 结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推
  • 树的高度或深度:树中结点的最大层次; 如上图:树的高度为4

二、二叉树 

1.什么是二叉树

一棵二叉树是结点的一个有限集合,该集合:

  • 或者为空
  • 或者是由一个根节点加上两棵别称为左子树右子树的二叉树组成。

 

2.二叉树特点

  • 二叉树不存在度大于2的结点(树的度:一棵树中,所有结点 度的最大值 称为树的度)
  • 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树 

3.满二叉树与完全二叉树

  • 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵又树的层数为K,且结点总数是2^k-1,则它就是满二叉树

  • 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一 一对应时称之为完全二叉树。 意思就是完全二叉树的所有节点从上到下,从左到右依次排满。 要注意的是满二叉树是一种特殊的完全二又树。 

完全二叉树有一个特点,那就是如果总结点数为奇数,那么这个二叉树就只有一个度为1的节点,如果是偶数,就没有度为1的结点。 

4.二叉树性质

1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有 2^{i}-1(i>0)个结点

2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是2^{k}-1(k>=0)

3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1

4. 具有n个结点的完全二叉树的深度k为\log _{_{2}}(n+1)上取整

5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i 的结点有:

  • 若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
  • 若2i+1<n,左孩子序号:2i+1,否则无左孩子
  • 若2i+2<n,右孩子序号:2i+2,否则无右孩子 

 相关题目:

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199
2.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2
3.一个具有767个节点的完全二叉树,其叶子节点个数为()
A 383
B 384
C 385
D 386
4.一棵完全二叉树的节点数为531个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12 

答案:
1.B

解析:

叶子结点或终端结点:度为0的结点称为叶结点。
由前面说的二叉树性质第3点:对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1。

所以 n2=199,n0=n2+1=200.

2.A

解析: 

设结点总数为N=2n,因为题目中说了这是一颗完全二叉树,而结点总数是偶数,那么说明这个二叉树只有一个度为1的结点。
N=n0+n1+n2 => 2n=n0+n2+1 因为n0=n2+1,所以  2n-1=n0+n0-1 => n0=n

3.B 

解析: 

N=767,767为奇数,所以这个二叉树没有度为1的结点(n1=0)
N=n0+n1+n2=n0+n0-1=767 => n0=384

4.B 

解析: 

由前面说的二叉树性质第4点:具有n个结点的完全二叉树的深度k为l\log _{_{2}}(n+1)上取整.

2^{9}< 532 <2^{10}  => 9<\log _{_{2}}532 <10,因为是上取整,那么 k=10.

5.二叉树的存储 

二叉树的存储结构分为:
顺序存储类似于链表的链式存储。二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式(孩子表示法以及孩子双亲表示法)。 

// 孩子表示法
class Node {int val; // 数据域Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
} 
// 孩子双亲表示法
class Node {int val; // 数据域Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树Node parent; // 当前节点的根节点
}

6.二叉树的遍历和基本操作 

二叉树的遍历

1.前中后序遍历

  • 前序遍历:根节点 左子树 右子树
  • 中序遍历:左子树 根节点 右子树
  • 后序遍历:左子树 右子树 根节点

2.层序遍历

自上而下,自左至右逐层访问树的结点的过程就是层序遍历

有如下二叉树,大家可用上述方法自行遍历 

前序遍历:A B D E H C F G

中序遍历:D B E H A F C G 

后序遍历:B D E H C F G A 

层序遍历:A B C D E F G H 

代码实现: 

这里先按照上图用穷举的方式快速构建一颗二叉树(不是构建二叉树的正确方法) 

public class BinaryTree {public static class TreeNode {TreeNode left;TreeNode right;char val;TreeNode(char val) {this.val = val;}}private TreeNode root;public TreeNode createTree() {TreeNode A = new TreeNode('A');TreeNode B = new TreeNode('B');TreeNode C = new TreeNode('C');TreeNode D = new TreeNode('D');TreeNode E = new TreeNode('E');TreeNode F = new TreeNode('F');TreeNode G = new TreeNode('G');TreeNode H = new TreeNode('H');root = A;A.left = B;A.right = C;B.left = D;B.right = E;C.left = F;C.right = G;E.right = H;return A;}//前序遍历public void preOrder(TreeNode root){if(root==null){return;}System.out.print(root.val+" ");preOrder(root.left);preOrder(root.right);}//中序遍历public void inOrder(TreeNode root){if (root==null){return;}inOrder(root.left);System.out.print(root.val+" ");inOrder(root.right);}//后序遍历public void postOrder(TreeNode root){if (root==null){return;}preOrder(root.left);preOrder(root.right);System.out.print(root.val+" ");}}
public class Main {public static void main(String[] args) {BinaryTree binaryTree=new BinaryTree();BinaryTree.TreeNode root=binaryTree.createTree();System.out.print("前序遍历:");binaryTree.preOrder(root);System.out.println();System.out.print("中序遍历:");binaryTree.inOrder(root);System.out.println();System.out.print("后序遍历:");binaryTree.postOrder(root);}
}

运行结果:

二叉树的基本操作

1. 获取树中节点的个数

这个方法实现在这里有两种思路:

1.遍历这个树,是结就nodeSize++
2.用子问题的思路来解决:总结点数=左子树结点的个数+右子树结点的个数+根结点

    public static int nodeSize=0;//获取树中节点的个数(遍历每个节点)public void size(TreeNode root){if (root==null){return;}nodeSize++;size(root.left);size(root.right);}//用子问题的思路来解决:总节点数=左子树节点的个数+右子树节点的个数+根节点public int size2(TreeNode root){if (root==null){return 0;}int tmp=size2(root.left)+size2(root.right)+1;return tmp;}

2.获取叶子节点的个数

叶子结点的特点就是度为0,即其左子树和右子树都是空。

这个方法实现在这里有两种思路:

1.遍历这个树,只要root不为空且root的左子树和右子树都为空,就说明root所在的结点是叶子结点
2.用子问题的思路来解决:总叶子结点数=左子树的叶子结点+右子树的叶子结点

    public int leafSize;public void getLeafNodeCount(TreeNode root) {if(root == null) {return;}if(root.left == null && root.right == null) {leafSize++;}getLeafNodeCount(root.left);getLeafNodeCount(root.right);}//子问题思路:这颗树的总叶子结点数=左子树的叶子结点+右子树的叶子结点public int getLeafNodeCount2(TreeNode root) {if (root == null) {return 0;}if (root.left == null && root.right == null) {return 1;}return getLeafNodeCount2(root.left)+ getLeafNodeCount2(root.right);}

3.获取第K层节点的个数

    public int getKLevelNodeCount(TreeNode root,int k){if (root==null){return 0;}if (k==1){return 1;}return getKLevelNodeCount(root.left,k-1)+getKLevelNodeCount(root.right,k-1);}

4.获取二叉树的高度

 整棵树的高度=找出 左子树的高度 和 右子树的高度 的最大值 +1(树的高度或深度:树中结点的最大层次)

    // 获取二叉树的高度public int getHeight(TreeNode root){if(root==null){return 0;}int leftHeight=getHeight(root.left);int rightHeight=getHeight(root.right);return Math.max(leftHeight,rightHeight)+1;}

5. 检测值为value的元素是否存在

1.先判断根节点的值是不是我们要找的value,如果是就返回这个root

2.如果当前根节点不是我们要找的value,那就到当前根节点的左子树去找,如果左子树找不到就去右子树找。

// 检测值为value的元素是否存在private TreeNode find(TreeNode root, int val){if (root==null){return null;}if (root.val==val){System.out.println(root.val);return root;}TreeNode leftval=find(root.left,val);if(leftval!=null){return leftval;}TreeNode rightval=find(root.right,val);if (rightval!=null){return rightval;}return null;}

6.层序遍历

先入队根节点,然后出队,若当前根节点左右不为空,则把不为空的左右入队,出新的队头,以此类推。  

   public void levelOrder(TreeNode root) {if(root == null) {return;}Queue<TreeNode> queue = new LinkedList<>();queue.offer(root);while (!queue.isEmpty()) {TreeNode cur = queue.poll();System.out.print(cur.val+" ");if(cur.left != null) {queue.offer(cur.left);}if(cur.right != null) {queue.offer(cur.right);}}}

7.判断一棵树是不是完全二叉树

1.先把根节点放到队列当中

2.队列不为空,弹出元素,带入左右(可以为空)

3.当队列弹出元素为null则停止

4.最后一步,判断当前队列是否元素都是nul,只要出现不为nul的元素,则当前二又树不是完全二叉树 

   public boolean isCompleteTree(TreeNode root) {if(root == null) return true;Queue<TreeNode> queue = new LinkedList<>();queue.offer(root);while (!queue.isEmpty()) {TreeNode cur = queue.poll();if(cur != null) {queue.offer(cur.left);queue.offer(cur.right);}else {break;//结束之后  遍历队列剩下的所有元素 是不是都是null}}// 遍历队列剩下的所有元素 是不是都是nullwhile (!queue.isEmpty()) {TreeNode cur = queue.poll();if(cur != null) {return false;}}return true;}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/796355.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络——37认证

认证 目标&#xff1a;Bob需要Alice证明他的身份 Protocol ap1.0&#xff1a;Alice说"A am Alice" 可能出现的问题&#xff1a; 在网络上Bob看不到Alice&#xff0c;因此Trudy可以简单的声称他是Alice 认证&#xff1a;重新尝试 Protocol ap2.0&#xff1a;Alice…

CSS编写登录框样式

/* 重置浏览器默认样式 */ * { margin: 0; padding: 0; box-sizing: border-box; } /* 设置登录框的基本样式 */ .login-box { width: 100%; max-width: 400px; margin: 50px auto; background-color: #f4f4f4; padding: 20px; box-shad…

影院座位选择简易实现(uniapp)

界面展示 主要使用到uniap中的movable-area&#xff0c;和movable-view组件实现。 代码逻辑分析 1、使用movable-area和movea-view组件&#xff0c;用于座位展示 <div class"ui-seat__box"><movable-area class"ui-movableArea"><movab…

【毕业论文】酒店价格采集与可视化查询设计与实现开题报告2000字

酒店价格采集与可视化查询设计与实现开题报告 研究背景 随着互联网技术的飞速发展&#xff0c;人们获取信息的途径越来越多样化。特别是在旅游行业中&#xff0c;消费者对于酒店价格的透明度和实时性要求越来越高。美团、大众点评、抖音等平台作为信息聚合和分享的重要渠道&a…

力扣---***********LRU 缓存***********

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类&#xff1a; LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存int get(int key) 如果关键字 key 存在于缓存中&#xff0c;则返回关键字的值&#xff0c;否则返回 -…

Flutter开发进阶之错误信息

Flutter开发进阶之错误信息 在Flutter开发中错误信息通常是由Exception和Error表示&#xff0c;Error表示严重且不可恢复的错误&#xff0c;一般会导致程序直接终止&#xff0c;而Exception可以被显式抛出&#xff0c;一般为代码逻辑错误&#xff0c;根据Flutter的解释说Excep…

Vue3:对ref、reactive的一个性能优化API

一、情景说明 我们知道&#xff0c;在Vue3中&#xff0c;想要创建响应式的变量&#xff0c;就要用到ref、reactive来包裹一下数据即可。 但是&#xff0c;这里有个损耗性能的地方 就是&#xff0c;被它包裹的数据&#xff0c;都会构建成响应式的&#xff0c;无论多少层次&…

【opencv】示例-aruco_dict_utils.cpp 计算 ArUco 字典度量

该程序可用于计算 ArUco 字典度量。 要计算考虑翻转标记的指标&#xff0c;请使用 -r 标志。 该程序可用于创建和编写自定义 ArUco 词典。 #include <opencv2/objdetect/aruco_detector.hpp> // 包含aruco marker检测相关功能的头文件 #include <iostream> // 包含…

数码视讯Q7盒子刷armbian遇到的坑之二

继续&#xff0c;nand的q7 搜遍全网&#xff0c;这个盒子能用的安卓映像有两个&#xff0c;一个本站付费下载的那个&#xff0c;另一个是20191218-Q7-nand-4.4.2-root-twrp-Milton这个映像&#xff08;具体地址自己搜索吧&#xff09;。第一个需要license&#xff0c;需要自己…

如何在 Ubuntu 上安装和配置 Tomcat 服务器?

简介&#xff1a;最近有粉丝朋友在问如何在 Ubuntu 上安装和配置 Tomcat 服务器&#xff1f;今天特地写这篇文章进行解答&#xff0c;希望能够帮助到大家。 文章目录 Ubuntu上安装和配置Tomcat的详细步骤Tomcat在Linux环境下的安装与配置一、下载并上传Tomcat压缩包二、启动To…

云架构(三) 防腐层模式

Anti-corruption Layer pattern (https://learn.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer) 简单描述 实现一个门面或者适配层在新应用和历史遗留程序之间。在不同的系统之间实现一个门面或者适配层&#xff0c;不需要使用相同的语义。它在不…

961: 进制转换问

【学习版】 【C语言】 #include<iostream>struct SeqList {int top;int len;int* s; };void initStack(SeqList* stack, int len) {stack->s new int[len];stack->top -1;stack->len len; }void push(SeqList* stack, int x) {stack->s[stack->top] …

YOLOv5实战记录05 Pyside6可视化界面

个人打卡&#xff0c;慎看。 指路大佬&#xff1a;【手把手带你实战YOLOv5-入门篇】YOLOv5 Pyside6可视化界面_哔哩哔哩_bilibili 零、虚拟环境迁移路径后pip报错解决 yolov5-master文件夹我换位置后&#xff0c;无法pip install了。解决如下&#xff1a; activate.bat中修改…

.NET8 和 Vue.js 的前后端分离

在.NET 8中实现前后端分离主要涉及到两个部分&#xff1a;后端API的开发和前端应用的开发。后端API通常使用ASP.NET Core来构建&#xff0c;而前端应用则可以使用任何前端框架或技术栈&#xff0c;比如Vue.js、React或Angular等。下面是一个简化的步骤指南&#xff0c;帮助你在…

汇川PLC学习Day4:电机参数和气缸控制参数

汇川PLC学习Day4&#xff1a;伺服电机参数和气缸控制参数 一、伺服电机参数二、气缸参数1. 输入IO映射&#xff08;1&#xff09;输入IO映射&#xff08;2&#xff09; 输入IO触摸屏标签显示映射 2. 输出IO映射&#xff08;1&#xff09;输出IO映射&#xff08;2&#xff09; …

【工具或平台】Gem5编译

Gem5编译 安装依赖 源更新 sudo apt-get update sudo apt-get upgrade 安装依赖 sudo apt install vim sudo apt install build-essential git m4 scons zlib1g zlib1g-dev libprotobuf-dev protobuf-compiler libprotoc-dev libgoogle-perftools-dev python3-dev python-is-…

基于单片机电动车电压电流监测系统

**单片机设计介绍&#xff0c;基于单片机电动车电压电流监测系统 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的电动车电压电流监测系统是一个集成了电子技术、单片机编程以及电压电流测量技术的系统。其主要目的是…

Open3D (C++) 从.txt文件中读取数据到矩阵

目录 一、算法概述二、代码实现三、结果展示四、测试数据本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法概述 在进行实验的时候有时需要借助不同的工具来实现一些比较复杂的操作,比如使用matlab中自带的拉…

lua学习笔记4(运算符的学习)

print("*****************************lua运算符的学习*******************************") print("*****************************基本运算符*******************************") a1145 b8848 print("加法运算"..ab) print("减法运算".…

Spark-Scala语言实战(14)

在之前的文章中&#xff0c;我们学习了如何在spark中使用键值对中的fullOuterJoin&#xff0c;zip&#xff0c;combineByKey三种方法。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点…