了解自动化机器学习 AutoML

🍉 CSDN 叶庭云https://yetingyun.blog.csdn.net/


在这里插入图片描述

自动化机器学习(AutoML)概述

自动化机器学习(AutoML)旨在自动化机器学习模型的开发流程,通过简化或去除需要专业知识的复杂步骤,让非专家用户也能轻松创建和部署机器学习模型。AutoML 的核心组件包括:数据预处理、特征工程、模型选择、模型训练与超参数优化以及模型部署与推理

历史背景:AutoML 的发展历程

AutoML 的概念最初可追溯到 1990 年代,当时研究者开始探索自动化机器学习流程的方法。进入 2010 年代初,AutoML 作为一个研究领域开始蓬勃发展,并涌现出众多工具和平台,如 Auto-WEKA、Auto-sklearn 等。这些发展不仅标志着 AutoML 从理论向实践的转变,而且为更广泛的应用奠定了坚实基础。

关键概念与原理:AutoML 的基础知识

  1. 数据预处理:包括数据清洗、缺失值和异常值处理、数据规范化和集成等步骤。

  2. 特征工程:自动化选择和创建对模型有用的特征。

  3. 模型选择:自动从多种机器学习算法中选择最适合输入数据的模型。

  4. 模型训练与超参数优化:交叉验证可以更准确地估计模型在未见数据上的表现,并有助于防止过拟合。使用算法如网格搜索、随机搜索、贝叶斯优化等自动找到最佳的模型参数。

  5. 模型部署与推理:自动化将训练好的模型部署到生产环境。

当前应用:AutoML 的实际使用场景

AutoML 在多个行业均有广泛应用,尤其在金融、医疗、零售和制造业中表现突出。它被用于信用评分、疾病诊断、客户细分和产品推荐等多种场景,为企业提供了快速、高效的解决方案,帮助企业在数据分析和决策方面取得优势。

目前常见的 AutoML 框架和工具整理如下

  • AutoGluon 可以快速原型设计,使用几行代码就能构建基于图像、文本、时间序列和表格数据的机器学习解决方案。它能自动利用最先进的模型,无需专家知识,易于部署,支持云预测器和预构建容器,且可自定义特征处理、模型和指标。提供了多种快速示例,包括表格数据预测、文本分类、图像分类、命名实体识别、文本匹配、对象检测和时间序列预测等。此外,还介绍了如何安装 AutoGluon。

  • AutoX 是一个高效的自动化机器学习工具,主要特点包括在多个 Kaggle 数据集上表现出色、简单易用、适用于分类和回归问题、全自动的数据清洗和模型调参等。它提供了多种自动化工具,包括表格数据挖掘、自动化服务部署、机器学习可解释功能、文本处理、推荐系统和视频分类任务。AutoX 还支持通过 GitHub 或 pip 进行安装,并提供了快速上手指南、效果对比和社区案例。此外,AutoX 也鼓励社区贡献和反馈,以进一步改进工具。OpenMLDB+AutoX:整合自动特征工程,拥抱高效机器学习。

  • auto-sklearn 是一个自动化机器学习工具包,可以作为 scikit-learn 估计器的直接替代品。它通过 Bayesian 优化、元学习和集成构建的最新进展,使机器学习用户免于算法选择和超参数调整的烦恼。auto-sklearn 最近还增加了对文本特征的支持,并提供了处理文本预处理的示例。使用 auto-sklearn 可以显著提高机器学习项目的效率和准确性。

  • AutoKeras 是一个基于 Keras 的自动机器学习(AutoML)系统,由德克萨斯 A&M 大学的 DATA 实验室开发。它旨在使机器学习对每个人都易于访问。通过简单的代码示例,用户可以轻松地进行图像分类等任务。官方网站和书籍《Automated Machine Learning in Action》提供了学习资源。安装 AutoKeras 需要 Python 版本 >=3.7 和 TensorFlow 版本 >=2.8.0。

  • TPOT 是一个自动化的机器学习工具,使用遗传编程来优化机器学习流程。它能够自动探索数千种可能的流程,为你的数据找到最佳方案,并在搜索结束后提供 Python 代码,方便用户进行进一步的调整。TPOT 基于 scikit-learn 构建,因此它生成的代码对于熟悉 scikit-learn 的用户来说应该很熟悉。TPOT 目前仍在积极开发中,建议用户定期检查更新。

  • H2O AutoML 的 AutoML 功能通过自动化训练和调整多个模型的过程,简化了机器学习流程。虽然使用这些工具不需要深厚的数据科学背景,但要生成高性能的机器学习模型仍然需要一定的知识和背景。此外,H2O 提供了一系列模型可解释性方法,使用户能够通过简单的函数调用生成解释,从而更容易地探索和解释 AutoML 模型。AutoML 不仅适用于非专家,也为高级用户提供了便利,通过提供一个简单的包装函数执行多个建模相关任务,节省了时间,让他们可以专注于数据预处理、特征工程和模型部署等其他数据科学流程任务。

挑战与争议:AutoML面临的问题

AutoML 面临的挑战包括模型的可解释性、隐私保护以及对数据科学家角色的影响。有观点认为,AutoML 可能会减少对数据科学家技能的依赖,但同时也可能加剧数据隐私和偏见问题。此外,由于 AutoML 模型的可解释性不足,可能会影响用户对模型决策的信任。

未来趋势:AutoML 的发展前景

未来,AutoML 可能会进一步提升其自适应学习能力,增强其可解释性,并为用户提供更个性化的定制服务。随着技术的不断发展,AutoML 将变得更加智能化,能够应对更复杂的数据类型和应用场景。同时,随着对隐私和伦理问题的日益关注,未来的 AutoML 系统将可能融入更多关于数据治理和公平性的考量。


📚️ 相关链接:

  • 最新《自动化机器学习》报告,73 页 PPT 建模阐述 AutoML 进展,附书籍

  • AutoML:实践者眼中的理想与现实

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/796277.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSS面试题常用知识总结day03

大家好我是没钱的君子下流坯,用自己的话解释自己的知识 前端行业下坡路,甚至可说前端已死,我还想在前段行业在干下去,所以从新开始储备自己的知识。 从CSS——>Javascript——>VUE2——>Vuex、VueRouter、webpack——>…

Stale Diffusion、Drag Your Noise、PhysReaction、CityGaussian

本文首发于公众号:机器感知 Stale Diffusion、Drag Your Noise、PhysReaction、CityGaussian Drag Your Noise: Interactive Point-based Editing via Diffusion Semantic Propagation Point-based interactive editing serves as an essential tool to compleme…

Nuxt 3 项目中配置 Tailwind CSS

官方文档:https://www.tailwindcss.cn/docs/guides/nuxtjs#standard 安装 Tailwind CSS 及其相关依赖 执行如下命令,在 Nuxt 项目中安装 Tailwind CSS 及其相关依赖 npm install -D tailwindcss postcss autoprefixerpnpm install -D tailwindcss post…

【cpp】快速排序优化

标题:【cpp】快速排序 水墨不写bug 正文开始: 快速排序的局限性: 虽然快速排序是一种高效的排序算法,但也存在一些局限性: 最坏情况下的时间复杂度:如果选择的基准元素不合适,或者数组中存在大…

Netty 3 - 组件和设计

这里将回顾我们之前章节讲到过的主要概念和组件。 1 Channel 、EventLoop和ChannelFuture Channel —— Socket;EventLoop —— 控制流、多线程处理、并发;ChannelFuture —— 异步通知。 1.1 Channel 接口 基本的I/O操作(bind()、connect()、read()和write()&a…

免注册,ChatGPT可即时访问了!

AI又有啥进展?一起看看吧 Apple进军个人家用机器人 Apple在放弃自动驾驶汽车项目并推出混合现实头显后,正在进军个人机器人领域,处于开发家用环境机器人的早期阶段 报告中提到了两种可能的机器人设计。一种是移动机器人,可以跟…

鸿蒙OS元服务开发:【(Stage模型)学习窗口沉浸式能力】

一、体验窗口沉浸式能力说明 在看视频、玩游戏等场景下,用户往往希望隐藏状态栏、导航栏等不必要的系统窗口,从而获得更佳的沉浸式体验。此时可以借助窗口沉浸式能力(窗口沉浸式能力都是针对应用主窗口而言的),达到预…

二叉堆解读

在数据结构和算法中,二叉堆是一种非常重要的数据结构,它被广泛用于实现优先队列、堆排序等场景。本文将介绍二叉堆的基本概念、性质、操作以及应用场景。 一、基本概念 二叉堆是一种特殊的完全二叉树,它满足堆性质:对于每个节点…

电子商务平台中大数据的应用|主流电商平台大数据采集API接口

(一)电商平台物流管理中大数据的应用 电商平台订单详情订单列表物流信息API接口应用 电子商务企业对射频识别设备、条形码扫描设备、全球定位系统及销售网站、交通、库存等管理软件数据进行实时或近实时的分析研究,提高物流速度和准确性。部分电商平台已建立高效的物流配送网…

【STL】vector的底层原理及其实现

vector的介绍 vector是一个可变的数组序列容器。 1.vector的底层实际上就是一个数组。因此vector也可以采用连续存储空间来存储元素。也可以直接用下标访问vector的元素。我们完全可以把它就当成一个自定义类型的数组使用。 2.除了可以直接用下标访问元素,vector还…

掌握数据相关性新利器:基于R、Python的Copula变量相关性分析及AI大模型应用探索

在工程、水文和金融等各学科的研究中,总是会遇到很多变量,研究这些相互纠缠的变量间的相关关系是各学科的研究的重点。虽然皮尔逊相关、秩相关等相关系数提供了变量间相关关系的粗略结果,但这些系数都存在着无法克服的困难。例如,…

解决win7作为虚拟机无法复制粘贴共享文件的问题

win7作为虚拟机经常会出现无法与主机的剪切板共享、文件共享。 归根结底是win7虚拟机里面没有安装VMware Tools 能够成功安装vmware tools的条件: 1)win7版本为win7 sp1及以上 2)安装KB4490628,KB4474419补丁 因此下面来详细介绍…

【LeetCode题解】2192. 有向无环图中一个节点的所有祖先+1026. 节点与其祖先之间的最大差值

文章目录 [2192. 有向无环图中一个节点的所有祖先](https://leetcode.cn/problems/all-ancestors-of-a-node-in-a-directed-acyclic-graph/)思路:BFS记忆化搜索代码: 思路:逆向DFS代码: [1026. 节点与其祖先之间的最大差值](https…

为什么说AI的尽头是生物制药?

AI的尽头究竟是什么?有投资者说是光伏,也有投资者说是电力,而英伟达给出的答案则是生物制药。 在英伟达2023年投资版图中,除AI产业根基算法与基础建设外,生物制药是其重点布局的核心赛道。英伟达医疗保健副总裁Kimber…

FastEI论文阅读

前言 研究FastEI(Ultra-fast and accurate electron ionization mass spectrum matching for compound identification with million-scale in-silico library)有很长时间了,现在来总结一下,梳理一下认知。PS:为什么要…

【LeetCode: 21. 合并两个有序链表 + 链表】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

axios快速入门

一、环境配置 1.1概述 上古浏览器页面在向服务器请求数据时,因为返回的是整个页面的数据,页面都会强制刷新一下,这对于用户来讲并不是很友好。并且我们只是需要修改页面的部分数据,但是从服务器端发送的却是整个页面的数据&#…

攻防世界 Broadcast 题目解析

Broadcast 一:题目 二:解析 将压缩包解压,得到如上图所示,打开task.py,之后得到flag 这个有点简单了,不要被解压后文件太多所迷惑。

InnoDB中的索引方案

文章目录 InnoDB中的索引方案 InnoDB支持多种类型的索引,包括B-tree索引、全文索引、哈希索引等。B-tree索引是InnoDB存储引擎的默认索引类型,适用于所有的数据类型,包括字符串、数字和日期等。 以下是创建InnoDB表及其B-tree索引的示例代码…

VBA数据库解决方案第九讲:把数据库的内容在工作表中显示

《VBA数据库解决方案》教程(版权10090845)是我推出的第二套教程,目前已经是第二版修订了。这套教程定位于中级,是学完字典后的另一个专题讲解。数据库是数据处理的利器,教程中详细介绍了利用ADO连接ACCDB和EXCEL的方法…