Android14应用启动流程(源码+Trace)

1.简介

应用启动过程快的都不需要一秒钟,但这整个过程的执行是比较复杂的,无论是对手机厂商、应用开发来说启动速度也是核心用户体验指标之一,本文采用Android14源码与perfetto工具进行解析。

源码参考地址:Search

trace分析工具:Perfetto UI

2. Input事件处理流程

Input 是Android系统最常见的事件驱动之一,用户的点击、滑动、长按等操作,都属于 input 事件驱动,其中跑在 SystemServer进程的两个 native 循环线程InputReader 和 InputDispatcher就是input的核心,负责读取和分发 Input 事件。整个处理过程大致流程如下:

  1. InputReader负责从EventHub里面把Input事件读取出来,后放入 inboundqueue,即“iq”队列,然后交给 InputDispatcher 进行事件分发;
  2. InputDispatcher在拿到 InputReader获取的事件之后,对事件进行包装后放入 outboundqueueue,即“oq”队列,寻找并分发到各个目标窗口App的事件;
  3. WaitQueue队列“wq“里面记录的是已经派发给 App的事件,但是 App还在处理没有返回处理成功的事件;
  4. PendingInputEventQueue队列“aq”中记录的是应用需要处理的Input事件,这里可以看到input事件已经传递到了应用进程;
  5. 在perfettotrace 中,inputreader.inputdispatcher.iq队列,oq队列,wq队列,wq队列都在system_server进程之中;每一个应用都有自己的aq队列。
  6. deliverInputEvent 标识 App UI Thread 被 Input 事件唤醒;App 响应处理Input 事件,内部会在其界面View树中传递处理。
  7. InputReader从trace里可以看到Input按下去的时候AppLaunch_dispatchPtr:Down和Input抬起的时候AppLaunch_dispatchPtr:Up,分析启动流程的时候可以从AppLaunch_dispatchPtr:Up开始

从trace上分析如下:

3. 应用进程的创建与启动

3.1 Pause桌面应用

这个过程可以先看一下trace的整体表现,然后再看对应的源码流程

3.1.1 trace分析如下:

3.1.2 源码分析如下:

launcher进程接收到input触控事件后调用binder调用框架AMS的的startActivity接口启动应用

相关简化代码如下:

/frameworks/base/services/core/java/com/android/server/wm/ActivityStarter.java

private int startActivityUnchecked(final ActivityRecord r, ActivityRecord sourceRecord,IVoiceInteractionSession voiceSession, IVoiceInteractor voiceInteractor,int startFlags, ActivityOptions options, Task inTask,TaskFragment inTaskFragment, @BalCode int balCode,NeededUriGrants intentGrants, int realCallingUid) {int result = START_CANCELED;final Task startedActivityRootTask;// Create a transition now to record the original intent of actions taken within// startActivityInner. Otherwise, logic in startActivityInner could start a different// transition based on a sub-action.// Only do the create here (and defer requestStart) since startActivityInner might abort.....try {//添加"startActivityInner"tagTrace.traceBegin(Trace.TRACE_TAG_WINDOW_MANAGER, "startActivityInner");// 执行startActivityInner启动应用的逻辑result = startActivityInner(r, sourceRecord, voiceSession, voiceInteractor,startFlags, options, inTask, inTaskFragment, balCode,intentGrants, realCallingUid);} finally {Trace.traceEnd(Trace.TRACE_TAG_WINDOW_MANAGER);startedActivityRootTask = handleStartResult(r, options, result, newTransition,remoteTransition);}}
....return result;
}

在启动app前,需要检查当前前台resume状态的activity,一般为launcher应用,所以第一步需要让launcher的 activity 进入pause状态。相关简化代码逻辑如下:

/frameworks/base/services/core/java/com/android/server/wm/TaskFragment.java

final boolean resumeTopActivity(ActivityRecord prev, ActivityOptions options,boolean deferPause) {boolean pausing = !deferPause && taskDisplayArea.pauseBackTasks(next);// mResumedActivity不为null,说明当前存在处于resume状态的Activity且不是新需要启动的应用if (mResumedActivity != null) {ProtoLog.d(WM_DEBUG_STATES, "resumeTopActivity: Pausing %s", mResumedActivity);// 执行startPausing通知桌面应用进入paused状态pausing |= startPausing(mTaskSupervisor.mUserLeaving, false /* uiSleeping */,next, "resumeTopActivity");}
}boolean startPausing(boolean userLeaving, boolean uiSleeping, ActivityRecord resuming,String reason) {
......schedulePauseActivity(prev, userLeaving, pauseImmediately,false /* autoEnteringPip */, reason);
......}void schedulePauseActivity(ActivityRecord prev, boolean userLeaving,boolean pauseImmediately, boolean autoEnteringPip, String reason) {ProtoLog.v(WM_DEBUG_STATES, "Enqueueing pending pause: %s", prev);try {
.....// 相关执行动作封装事务,binder通知mResumedActivity也就是桌面执行pause动作mAtmService.getLifecycleManager().scheduleTransaction(prev.app.getThread(),prev.token, PauseActivityItem.obtain(prev.finishing, userLeaving,prev.configChangeFlags, pauseImmediately, autoEnteringPip));} catch (Exception e) {// Ignore exception, if process died other code will cleanup.
....}
}

桌面应用进程这边执行收到pause消息后执行Activity的onPause生命周期,并在执行完成后,会binder调用AMS的activityPaused接口通知系统执行完activity的pause动作,相关代码如下:

/frameworks/base/core/java/android/app/servertransaction/PauseActivityItem.java

@Override
public void postExecute(ClientTransactionHandler client, IBinder token,PendingTransactionActions pendingActions) {if (mDontReport) {return;}// TODO(lifecycler): Use interface callback instead of actual implementation.ActivityClient.getInstance().activityPaused(token);
}

AMS这边收到应用的activityPaused调用后,继续执行启动应用的逻辑,判断需要启动的应用Activity所在的进程不存在,所以接下来需要先startProcessAsync创建应用进程,相关简化代码如下:

/frameworks/base/services/core/java/com/android/server/wm/ActivityTaskSupervisor.java

void startSpecificActivity(ActivityRecord r, boolean andResume, boolean checkConfig) {// Is this activity's application already running?final WindowProcessController wpc =mService.getProcessController(r.processName, r.info.applicationInfo.uid);
....// 1.如果wpc不为null且hasThread表示应用Activity所属进程存在,直接realStartActivityLocked启动Activityif (wpc != null && wpc.hasThread()) {try {realStartActivityLocked(r, wpc, andResume, checkConfig);return;}
.......final boolean isTop = andResume && r.isTopRunningActivity();mService.startProcessAsync(r, knownToBeDead, isTop,isTop ? HostingRecord.HOSTING_TYPE_TOP_ACTIVITY: HostingRecord.HOSTING_TYPE_ACTIVITY);
}

3.2 创建应用进程

在桌面点击图标启动一个应用的组件如Activity时,如果Activity所在的进程不存在,就会创建并启动进程。Android系统中一般应用进程的创建都是统一由zygote进程fork创建的,AMS在需要创建应用进程时,会通过socket连接并通知到到zygote进程在开机阶段就创建好的socket服务端,然后由zygote进程fork创建出应用进程。整体架构如下图所示:

应用进程创建流程图.png

3.2.1 AMS 发送socket请求

3.2.1.1 源码分析如下:
ActivityManagerService.java

frameworks/base/services/core/java/com/android/server/am/ActivityManagerService.java

@GuardedBy("this")final ProcessRecord startProcessLocked(...) {return mProcessList.startProcessLocked(...);
}
ProcessList.java

frameworks/base/services/core/java/com/android/server/am/ProcessList.java

private Process.ProcessStartResult startProcess(HostingRecord hostingRecord, String entryPoint,ProcessRecord app, int uid, int[] gids, int runtimeFlags, int zygotePolicyFlags,int mountExternal, String seInfo, String requiredAbi, String instructionSet,String invokeWith, long startTime) {try {// 原生标识应用进程创建所加的systrace tagTrace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "Start proc: " +app.processName);...// 调用Process的start方法创建进程startResult = Process.start(...);...} finally {Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);}
}
Process.java

frameworks/base/core/java/android/os/Process.java

public static ProcessStartResult start(...) {// 调用ZygoteProcess的start函数return ZYGOTE_PROCESS.start(...);
}
ZygoteProcess.java

frameworks/base/core/java/android/os/ZygoteProcess.java

public final Process.ProcessStartResult start(...){try {return startViaZygote(...);} catch (ZygoteStartFailedEx ex) {...}
}private Process.ProcessStartResult startViaZygote(...){ArrayList<String> argsForZygote = new ArrayList<String>();...
//在ZygoteProcess#startViaZygote中,最后创建应用进程的逻辑:
1. openZygoteSocketIfNeeded函数中打开本地socket客户端连接到zygote进程的socket服务端;
2. zygoteSendArgsAndGetResult发送socket请求参数,带上了创建的应用进程参数信息;
3. return返回的数据结构ProcessStartResult中会有新创建的进程的pid字段。return zygoteSendArgsAndGetResult(openZygoteSocketIfNeeded(abi), argsForZygote);
}
3.2.1.2 trace分析如下:

3.2.2 Zygote 处理socket请求

其实早在系统开机阶段,zygote进程创建时,就会在ZygoteInit#main入口函数中创建服务端socket,并预加载系统资源和框架类(加速应用进程启动速度)

3.2.2.1 源码分析如下:

frameworks/base/core/java/com/android/internal/os/ZygoteInit.java

public static void main(String[] argv) {ZygoteServer zygoteServer = null;...try {...// 1.preload提前加载框架通用类和系统资源到进程,加速进程启动preload(bootTimingsTraceLog);...// 2.创建zygote进程的socket server服务端对象zygoteServer = new ZygoteServer(isPrimaryZygote);...// 3.进入死循环,等待AMS发请求过来caller = zygoteServer.runSelectLoop(abiList);} catch (Throwable ex) {...} finally {...}...}

继续往下看ZygoteServer#runSelectLoop如何监听并处理AMS客户端的请求:

frameworks/base/core/java/com/android/internal/os/ZygoteServer.java

 Runnable runSelectLoop(String abiList) {// 进入死循环监听while (true) {while (--pollIndex >= 0) {if (pollIndex == 0) {...} else if (pollIndex < usapPoolEventFDIndex) {// Session socket accepted from the Zygote server socket// 得到一个请求连接封装对象ZygoteConnectionZygoteConnection connection = peers.get(pollIndex);// processCommand函数中处理AMS客户端请求final Runnable command = connection.processCommand(this, multipleForksOK);}}}}

继续往下看ZygoteConnection#processCommand如何监听并处理AMS客户端的请求:

/frameworks/base/core/java/com/android/internal/os/ZygoteConnection.java

 Runnable processCommand(ZygoteServer zygoteServer, boolean multipleOK) {...// 1.fork创建应用子进程pid = Zygote.forkAndSpecialize(...);try {if (pid == 0) {...// 2.pid为0,当前处于新创建的子应用进程中,处理请求参数return handleChildProc(parsedArgs, childPipeFd, parsedArgs.mStartChildZygote);} else {...handleParentProc(pid, serverPipeFd);}} finally {...}}private Runnable handleChildProc(ZygoteArguments parsedArgs,FileDescriptor pipeFd, boolean isZygote) {...// 关闭从父进程zygote继承过来的ZygoteServer服务端地址closeSocket();...if (parsedArgs.mInvokeWith != null) {...} else {if (!isZygote) {// 继续进入ZygoteInit#zygoteInit继续完成子应用进程的相关初始化工作return ZygoteInit.zygoteInit(parsedArgs.mTargetSdkVersion,parsedArgs.mDisabledCompatChanges,parsedArgs.mRemainingArgs, null /* classLoader */);} else {...}}}

3.2.3 应用进程初始化

接上一节中的分析,zygote进程监听接收AMS的请求,fork创建子应用进程,然后pid为0时进入子进程空间,然后在 ZygoteInit#zygoteInit中完成进程的初始化动作

3.2.3.1 源码分析如下:

frameworks/base/core/java/com/android/internal/os/ZygoteInit.java

public static Runnable zygoteInit(int targetSdkVersion, long[] disabledCompatChanges,String[] argv, ClassLoader classLoader) {...// 原生添加名为“ZygoteInit ”的systrace tag以标识进程初始化流程Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ZygoteInit");RuntimeInit.redirectLogStreams();// 1.RuntimeInit#commonInit中设置应用进程默认的java异常处理机制RuntimeInit.commonInit();// 2.ZygoteInit#nativeZygoteInit函数中JNI调用启动进程的binder线程池ZygoteInit.nativeZygoteInit();// 3.RuntimeInit#applicationInit中反射创建ActivityThread对象并调用其“main”入口方法return RuntimeInit.applicationInit(targetSdkVersion, disabledCompatChanges, argv,classLoader);}

我们继续看RuntimeInit#applicationInit简化的代码流程:

frameworks/base/core/java/com/android/internal/os/RuntimeInit.java

 protected static Runnable applicationInit(int targetSdkVersion, long[] disabledCompatChanges,String[] argv, ClassLoader classLoader) {...// 结束“ZygoteInit ”的systrace tagTrace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);// Remaining arguments are passed to the start class's static mainreturn findStaticMain(args.startClass, args.startArgs, classLoader);}protected static Runnable findStaticMain(String className, String[] argv,ClassLoader classLoader) {Class<?> cl;try {// 1.反射加载创建ActivityThread类对象cl = Class.forName(className, true, classLoader);} catch (ClassNotFoundException ex) {...}Method m;try {// 2.反射调用其main方法m = cl.getMethod("main", new Class[] { String[].class });} catch (NoSuchMethodException ex) {...} catch (SecurityException ex) {...}...// 3.触发执行以上逻辑return new MethodAndArgsCaller(m, argv);}

我们继续往下看ActivityThread的main函数中又干了什么:

frameworks/base/core/java/android/app/ActivityThread.java

public static void main(String[] args) {// 原生添加的标识进程ActivityThread初始化过程的systrace tag,名为“ActivityThreadMain”Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");...// 1.创建并启动主线程的loop消息循环Looper.prepareMainLooper();...// 2.attachApplication注册到系统AMS中ActivityThread thread = new ActivityThread();thread.attach(false, startSeq);...Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);Looper.loop();...
}private void attach(boolean system, long startSeq) {...if (!system) {...final IActivityManager mgr = ActivityManager.getService();try {// 通过binder调用AMS的attachApplication接口将自己注册到AMS中mgr.attachApplication(mAppThread, startSeq);} catch (RemoteException ex) {throw ex.rethrowFromSystemServer();}}
}

可以看到进程ActivityThread#main函数初始化的主要逻辑是:

  1. 创建并启动主线程的loop消息循环;
  2. 通过binder调用AMSattachApplication接口将自己attach注册到AMS中。

主线程初始化完成后,主线程就有了完整的 LooperMessageQueueHandler,此时 ActivityThreadHandler 就可以开始处理 Message,包括 ApplicationActivityContentProviderServiceBroadcast 等组件的生命周期函数,都会以 Message 的形式,在主线程按照顺序处理,这就是 App 主线程的初始化和运行原理。

主线程初始化完成后,主线程就进入阻塞状态,等待 Message,一旦有 Message 发过来,主线程就会被唤醒,处理 Message,处理完成之后,如果没有其他的 Message 需要处理,那么主线程就会进入休眠阻塞状态继续等待。可以说Android系统的运行是受消息机制驱动的,而整个消息机制是由上面所说的四个关键角色相互配合实现的(HandlerLooperMessageQueueMessage):

  1. Handler : Handler 主要是用来处理 Message,应用可以在任何线程创建 Handler,只要在创建的时候指定对应的 Looper 即可,如果不指定,默认是在当前 Thread 对应的 Looper。
  2. Looper : Looper 可以看成是一个循环器, loop 方法开启后,不断地从 MessageQueue 中获取 Message,对 Message 进行 Delivery 和 Dispatch,最终发给对应的 Handler 去处理。
  3. **MessageQueue**:MessageQueue 就是一个 Message 管理器,队列中是 Message,在没有 Message 的时候,MessageQueue 借助 Linux ePoll机制,阻塞休眠等待,直到有 Message 进入队列将其唤醒
  4. **Message**:Message 是传递消息的对象,其内部包含了要传递的内容,最常用的包括 what、arg、callback 等。
3.2.3.2 trace分析如下:

4. 应用Application和Activity组件创建与初始化

4.1 Application的创建与初始化

应用进程启动初始化执行ActivityThread#main函数过程中,在开启主线程loop消息循环之前,会通过Binder调用系统核心服务AMS的attachApplication接口将自己注册到AMS中。下面我们接着这个流程往下看,我们先从systrace上看看AMS服务的attachApplication接口是如何处理应用进程的attach注册请求的:

trace分析如下:

attachApplication.png

我们继续来看相关代码的简化流程:

frameworks/base/services/core/java/com/android/server/am/ActivityManagerService.java

@GuardedBy("this")
private boolean attachApplicationLocked(@NonNull IApplicationThread thread,int pid, int callingUid, long startSeq) {...if (app.isolatedEntryPoint != null) {...} else if (instr2 != null) {// 1.通过oneway异步类型的binder调用应用进程ActivityThread#IApplicationThread#bindApplication接口thread.bindApplication(...);} else {thread.bindApplication(...);}...// See if the top visible activity is waiting to run in this process...if (normalMode) {try {// 2.继续执行启动应用Activity的流程didSomething = mAtmInternal.attachApplication(app.getWindowProcessController());} catch (Exception e) {Slog.wtf(TAG, "Exception thrown launching activities in " + app, e);badApp = true;}}
}/*frameworks/base/core/java/android/app/ActivityThread.java*/
private class ApplicationThread extends IApplicationThread.Stub {@Overridepublic final void bindApplication(...) {...AppBindData data = new AppBindData();data.processName = processName;data.appInfo = appInfo;...// 向应用进程主线程Handler发送BIND_APPLICATION消息,触发在应用主线程执行handleBindApplication初始化动作sendMessage(H.BIND_APPLICATION, data);}...
}class H extends Handler {...public void handleMessage(Message msg) {switch (msg.what) {case BIND_APPLICATION:Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "bindApplication");AppBindData data = (AppBindData)msg.obj;// 在应用主线程执行handleBindApplication初始化动作handleBindApplication(data);Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);break;...}}...
}@UnsupportedAppUsage
private void handleBindApplication(AppBindData data) {...
}

从上面的代码流程可以看出:AMS服务在执行应用的attachApplication注册请求过程中,会通过oneway类型的binder调用应用进程ActivityThread#IApplicationThreadbindApplication接口,而bindApplication接口函数实现中又会通过往应用主线程消息队列post BIND_APPLICATION消息触发执行handleBindApplication初始化函数,从systrace看如下图所示:

结合代码看看handleBindApplication的关键流程:

frameworks/base/core/java/android/app/ActivityThread.java

@UnsupportedAppUsage
private void handleBindApplication(AppBindData data) {...// 1.创建应用的LoadedApk对象data.info = getPackageInfoNoCheck(data.appInfo, data.compatInfo);...// 2.创建应用Application的Context、触发Art虚拟机加载应用APK的Dex文件到内存中,并加载应用APK的Resource资源final ContextImpl appContext = ContextImpl.createAppContext(this, data.info);...// 3.调用LoadedApk的makeApplication函数,实现创建应用的Application对象app = data.info.makeApplicationInner(data.restrictedBackupMode, null);...// 4.执行应用Application#onCreate生命周期函数mInstrumentation.onCreate(data.instrumentationArgs);...
}

在ActivityThread#**handleBindApplication初始化过程中在应用主线程中主要完成如下几件事件:

  1. 根据框架传入的ApplicationInfo信息创建应用APK对应的LoadedApk对象;
  2. 创建应用Application的Context对象;
  3. 创建类加载器ClassLoader对象并触发Art虚拟机执行OpenDexFilesFromOat动作加载应用APKDex文件
  4. 通过LoadedApk加载应用APKResource资源
  5. 调用LoadedApk的makeApplication函数,创建应用的Application对象;
  6. 执行应用Application#onCreate生命周期函数(APP应用开发者能控制的第一行代码);

下面我们结合代码重点看看APK Dex文件的加载和Resource资源的加载流程。

4.1.1 应用APK的Dex文件加载

ContextImpl.java

frameworks/base/core/java/android/app/ContextImpl.java

static ContextImpl createAppContext(ActivityThread mainThread, LoadedApk packageInfo,String opPackageName) {if (packageInfo == null) throw new IllegalArgumentException("packageInfo");// 1.创建应用Application的Context对象ContextImpl context = new ContextImpl(null, mainThread, packageInfo,ContextParams.EMPTY, null, null, null, null, null, 0, null, opPackageName);// 2.触发加载APK的DEX文件和Resource资源context.setResources(packageInfo.getResources());context.mContextType = isSystemOrSystemUI(context) ? CONTEXT_TYPE_SYSTEM_OR_SYSTEM_UI: CONTEXT_TYPE_NON_UI;return context;
}
LoadedApk.java

frameworks/base/core/java/android/app/LoadedApk.java


@UnsupportedAppUsage
public Resources getResources() {if (mResources == null) {...// 加载APK的Resource资源mResources = ResourcesManager.getInstance().getResources(null, mResDir,splitPaths, mLegacyOverlayDirs, mOverlayPaths,mApplicationInfo.sharedLibraryFiles, null, null, getCompatibilityInfo(),getClassLoader()//触发加载APK的DEX文件, null);
}
return mResources;@UnsupportedAppUsage
public ClassLoader getClassLoader() {synchronized (mLock) {if (mClassLoader == null) {createOrUpdateClassLoaderLocked(null /*addedPaths*/);}return mClassLoader;}
}
private void createOrUpdateClassLoaderLocked(List<String> addedPaths) {if (!mIncludeCode) {if (mDefaultClassLoader == null) {StrictMode.ThreadPolicy oldPolicy = allowThreadDiskReads();//创建默认的mDefaultClassLoader对象,触发art虚拟机加载dex文件mDefaultClassLoader = ApplicationLoaders.getDefault().getClassLoader("" /* codePath */, mApplicationInfo.targetSdkVersion, isBundledApp,librarySearchPath, libraryPermittedPath, mBaseClassLoader,null /* classLoaderName */);setThreadPolicy(oldPolicy);mAppComponentFactory = AppComponentFactory.DEFAULT;}}...if (mClassLoader == null) {// 赋值给mClassLoader对象mClassLoader = mAppComponentFactory.instantiateClassLoader(mDefaultClassLoader,new ApplicationInfo(mApplicationInfo));}
}
ApplicationLoaders.java

frameworks/base/core/java/android/app/ResourcesManager.java

ClassLoader getClassLoaderWithSharedLibraries(...) {// For normal usage the cache key used is the same as the zip path.return getClassLoader(zip, targetSdkVersion, isBundled, librarySearchPath,libraryPermittedPath, parent, zip, classLoaderName, sharedLibraries,nativeSharedLibraries, sharedLibrariesLoadedAfterApp);}private ClassLoader getClassLoader(String zip, ...) {...synchronized (mLoaders) {...if (parent == baseParent) {...// 1.创建BootClassLoader加载系统框架类,并增加相应的systrace tagTrace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, zip);ClassLoader classloader = ClassLoaderFactory.createClassLoader(zip,  librarySearchPath, libraryPermittedPath, parent,targetSdkVersion, isBundled, classLoaderName, sharedLibraries,nativeSharedLibraries, sharedLibrariesLoadedAfterApp);Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);...return classloader;}// 2.创建PathClassLoader加载应用APK的Dex类,并增加相应的systrace tagTrace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, zip);ClassLoader loader = ClassLoaderFactory.createClassLoader(zip, null, parent, classLoaderName, sharedLibraries,null /*sharedLibrariesLoadedAfterApp*/);Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);return loader;}
}
ClassLoaderFactory.java

frameworks/base/core/java/com/android/internal/os/ClassLoaderFactory.java

public static ClassLoader createClassLoader(...) {ClassLoader[] arrayOfSharedLibraries = (sharedLibraries == null)? null: sharedLibraries.toArray(new ClassLoader[sharedLibraries.size()]);if (isPathClassLoaderName(classloaderName)) {return new PathClassLoader(dexPath, librarySearchPath, parent, arrayOfSharedLibraries);}...
}
public static ClassLoader createClassLoader(String dexPath,String librarySearchPath, ClassLoader parent, String classloaderName,List<ClassLoader> sharedLibraries, List<ClassLoader> sharedLibrariesLoadedAfter) {// 通过new的方式创建ClassLoader对象,最终会触发art虚拟机加载APK的dex文件ClassLoader[] arrayOfSharedLibraries = (sharedLibraries == null)? null: sharedLibraries.toArray(new ClassLoader[sharedLibraries.size()]);ClassLoader[] arrayOfSharedLibrariesLoadedAfterApp = (sharedLibrariesLoadedAfter == null)? null: sharedLibrariesLoadedAfter.toArray(new ClassLoader[sharedLibrariesLoadedAfter.size()]);if (isPathClassLoaderName(classloaderName)) {return new PathClassLoader(dexPath, librarySearchPath, parent, arrayOfSharedLibraries,arrayOfSharedLibrariesLoadedAfterApp);
.....}

从以上代码可以看出:在创建Application的Context对象后会立马尝试去加载APK的Resource资源,而在这之前需要通过LoadedApk去创建类加载器ClassLoader对象,而这个过程最终就会触发Art虚拟机加载应用APK的dex文件,从systrace上看如下图所示:

OpenDexFilesFromOat.png

4.1.2 应用APK的Resource资源加载

ResourcesManager.java

frameworks/base/core/java/android/app/ResourcesManager.java

public @Nullable Resources getResources(...) {try {// 原生Resource资源加载的systrace tagTrace.traceBegin(Trace.TRACE_TAG_RESOURCES, "ResourcesManager#getResources");...resources = createResources(key, classLoader, assetsSupplier);}return resources;} finally {Trace.traceEnd(Trace.TRACE_TAG_RESOURCES);}
}private @Nullable Resources createResources(...) {synchronized (this) {...// 执行创建Resources资源对象ResourcesImpl resourcesImpl = findOrCreateResourcesImplForKeyLocked(key, apkSupplier);if (resourcesImpl == null) {return null;}...}
}private @Nullable ResourcesImpl findOrCreateResourcesImplForKeyLocked(@NonNull ResourcesKey key, @Nullable ApkAssetsSupplier apkSupplier) {...impl = createResourcesImpl(key, apkSupplier);...
}private @Nullable ResourcesImpl createResourcesImpl(@NonNull ResourcesKey key,@Nullable ApkAssetsSupplier apkSupplier) {...// 创建AssetManager对象,真正实现的APK文件加载解析动作final AssetManager assets = createAssetManager(key, apkSupplier);...
}private @Nullable AssetManager createAssetManager(@NonNull final ResourcesKey key,@Nullable ApkAssetsSupplier apkSupplier) {...for (int i = 0, n = apkKeys.size(); i < n; i++) {final ApkKey apkKey = apkKeys.get(i);try {// 通过loadApkAssets实现应用APK文件的加载builder.addApkAssets((apkSupplier != null) ? apkSupplier.load(apkKey) : loadApkAssets(apkKey));} catch (IOException e) {...}}...   
}private @NonNull ApkAssets loadApkAssets(@NonNull final ApkKey key) throws IOException {...if (key.overlay) {...} else {// 通过ApkAssets从APK文件所在的路径去加载apkAssets = ApkAssets.loadFromPath(key.path, flags);}...}
ApkAssets.java

frameworks/base/core/java/android/content/res/ApkAssets.java

public static @NonNull ApkAssets loadFromPath(@NonNull String path, @PropertyFlags int flags)throws IOException {return new ApkAssets(FORMAT_APK, path, flags, null /* assets */);
}private ApkAssets(@FormatType int format, @NonNull String path, @PropertyFlags int flags,@Nullable AssetsProvider assets) throws IOException {...// 通过JNI调用Native层的系统system/lib/libandroidfw.so库中的相关C函数实现对APK文件压缩包的解析与加载mNativePtr = nativeLoad(format, path, flags, assets);...
}

从以上代码可以看出:系统对于应用APK文件资源的加载过程其实就是创建应用进程中的Resources资源对象的过程,其中真正实现APK资源文件的I/O解析作,最终是借助于AssetManager中通过JNI调用系统Native层的相关C函数实现。整个过程从systrace上看如下图所示:

getResources.png

4.2 Activity的创建与初始化

AMS在收到应用进程的attachApplication注册请求后,先通过oneway类型的binder调用应用及进程的IApplicationThread#bindApplication接口,触发应用进程在主线程执行handleBindeApplication初始化操作,然后继续执行启动应用Activity的操作,下面我们来看看系统是如何启动创建应用Activity的,简化代码流程如下:

ActivityManagerService.java

frameworks/base/services/core/java/com/android/server/am/ActivityManagerService.java

@GuardedBy("this")
private boolean attachApplicationLocked(...) {...if (app.isolatedEntryPoint != null) {...} else if (instr2 != null) {// 1.通过oneway异步类型的binder调用应用进程ActivityThread#IApplicationThread#bindApplication接口thread.bindApplication(...);} else {thread.bindApplication(...);}...// See if the top visible activity is waiting to run in this process...if (normalMode) {try {// 2.继续执行启动应用Activity的流程didSomething = mAtmInternal.attachApplication(app.getWindowProcessController());} catch (Exception e) {Slog.wtf(TAG, "Exception thrown launching activities in " + app, e);badApp = true;}}
}
ActivityTaskManagerService.java

frameworks/base/services/core/java/com/android/server/wm/ActivityTaskManagerService.java

public boolean attachApplication(WindowProcessController wpc) throws RemoteException {synchronized (mGlobalLockWithoutBoost) {if (Trace.isTagEnabled(TRACE_TAG_WINDOW_MANAGER)) {// 原生标识attachApplication过程的systrace tagTrace.traceBegin(TRACE_TAG_WINDOW_MANAGER, "attachApplication:" + wpc.mName);}try {return mRootWindowContainer.attachApplication(wpc);} finally {Trace.traceEnd(TRACE_TAG_WINDOW_MANAGER);}}
}
RootWindowContainer.java

frameworks/base/services/core/java/com/android/server/wm/RootWindowContainer.java

boolean attachApplication(WindowProcessController app) throws RemoteException {try {return mAttachApplicationHelper.process(app);} finally {mAttachApplicationHelper.reset();}
}
......private class AttachApplicationHelper implements Consumer<Task>, Predicate<ActivityRecord> {private boolean mHasActivityStarted;private RemoteException mRemoteException;private WindowProcessController mApp;private ActivityRecord mTop;try {// realStartActivityLocked真正实现启动应用Activity流程if (mTaskSupervisor.realStartActivityLocked(r, mApp,mTop == r && r.getTask().canBeResumed(r) /* andResume */,true /* checkConfig */)) {mHasActivityStarted = true;}} catch (RemoteException e) {Slog.w(TAG, "Exception in new application when starting activity " + mTop, e);mRemoteException = e;return true;}return false;}}
}
ActivityTaskSupervisor.java

 /frameworks/base/services/core/java/com/android/server/wm/ActivityTaskSupervisor.java  


boolean realStartActivityLocked(ActivityRecord r, WindowProcessController proc,boolean andResume, boolean checkConfig) throws RemoteException {...// 1.先通过LaunchActivityItem封装Binder通知应用进程执行Launch Activity动作       clientTransaction.addCallback(LaunchActivityItem.obtain(...);// Set desired final state.final ActivityLifecycleItem lifecycleItem;if (andResume) {// 2.再通过ResumeActivityItem封装Binder通知应用进程执行Launch Resume动作        lifecycleItem = ResumeActivityItem.obtain(dc.isNextTransitionForward());}...clientTransaction.setLifecycleStateRequest(lifecycleItem);// 执行以上封装的Binder调用mService.getLifecycleManager().scheduleTransaction(clientTransaction);...
}

从以上代码分析可以看到,框架system_server进程最终是通过ActivityTaskSupervisor#realStartActivityLocked函数中,通过LaunchActivityItem和ResumeActivityItem两个类的封装,依次实现binder调用通知应用进程这边执行Activity的Launch和Resume动作的,我们继续往下看相关代码流程:

4.2.1 Activity Create

LaunchActivityItem.java

frameworks/base/core/java/android/app/servertransaction/LaunchActivityItem.java

public void execute(ClientTransactionHandler client, IBinder token,PendingTransactionActions pendingActions) {// 原生标识Activity Launch的systrace tagTrace.traceBegin(TRACE_TAG_ACTIVITY_MANAGER, "activityStart");ActivityClientRecord r = new ActivityClientRecord(token, mIntent, mIdent, mInfo,mOverrideConfig, mReferrer, mVoiceInteractor, mState, mPersistentState,mPendingResults, mPendingNewIntents, mActivityOptions, mIsForward, mProfilerInfo,client, mAssistToken, mShareableActivityToken, mLaunchedFromBubble,mTaskFragmentToken);// 调用到ActivityThread的handleLaunchActivity函数在主线程执行应用Activity的Launch创建动作client.handleLaunchActivity(r, pendingActions, mDeviceId, null /* customIntent */);Trace.traceEnd(TRACE_TAG_ACTIVITY_MANAGER);}
ActivityThread.java

frameworks/base/core/java/android/app/ActivityThread.java

@Override
public Activity handleLaunchActivity(ActivityClientRecord r,PendingTransactionActions pendingActions, Intent customIntent) {...final Activity a = performLaunchActivity(r, customIntent);...
}/**  Core implementation of activity launch. */
private Activity performLaunchActivity(ActivityClientRecord r, Intent customIntent) {...// 1.创建Activity的ContextContextImpl appContext = createBaseContextForActivity(r);try {//2.反射创建Activity对象activity = mInstrumentation.newActivity(cl, component.getClassName(), r.intent);...} catch (Exception e) {...}try {...if (activity != null) {...// 3.执行Activity的attach动作activity.attach(...);...// 4.执行应用Activity的onCreate生命周期函数,并在setContentView调用中创建DecorView对象mInstrumentation.callActivityOnCreate(activity, r.state);...}...} catch (SuperNotCalledException e) {...}
}
Activity.java

frameworks/base/core/java/android/app/Activity.java

 @UnsupportedAppUsagefinal void attach(...) {...// 1.创建表示应用窗口的PhoneWindow对象mWindow = new PhoneWindow(this, window, activityConfigCallback);...// 2.为PhoneWindow配置WindowManagermWindow.setWindowManager((WindowManager)context.getSystemService(Context.WINDOW_SERVICE),mToken, mComponent.flattenToString(),(info.flags & ActivityInfo.FLAG_HARDWARE_ACCELERATED) != 0);...
}

从上面代码可以看出,应用进程这边在收到系统binder调用后,在主线程中创建Activiy的流程主要步骤如下

  1. 创建Activity的Context;
  2. 通过反射创建Activity对象;
  3. 执行Activity的attach动作,其中会创建应用窗口的PhoneWindow对象并设置WindowManage
  4. 执行应用ActivityonCreate生命周期函数,并在setContentView中创建窗口的DecorView对象
以上过程从trace分析如下:

ActivityStart.png

4.2.2 Activity Resume

ResumeActivityItem.java

frameworks/base/core/java/android/app/servertransaction/ResumeActivityItem.java

@Override
public void execute(ClientTransactionHandler client, ActivityClientRecord r,PendingTransactionActions pendingActions) {// 原生标识Activity Resume的systrace tagTrace.traceBegin(TRACE_TAG_ACTIVITY_MANAGER, "activityResume");client.handleResumeActivity(r, true /* finalStateRequest */, mIsForward,mShouldSendCompatFakeFocus, "RESUME_ACTIVITY");Trace.traceEnd(TRACE_TAG_ACTIVITY_MANAGER);
}
ActivityThread.java

frameworks/base/core/java/android/app/ActivityThread.java

@Override
public void handleResumeActivity(...){...// 1.执行performResumeActivity流程,执行应用Activity的onResume生命周期函数if (!performResumeActivity(r, finalStateRequest, reason)) {return;}    ...if (r.window == null && !a.mFinished && willBeVisible) {...if (a.mVisibleFromClient) {if (!a.mWindowAdded) {...// 2.执行WindowManager#addView动作开启视图绘制逻辑wm.addView(decor, l);} else {...}}}...
}
public ActivityClientRecord performResumeActivity(...) {...// 执行应用Activity的onResume生命周期函数r.activity.performResume(r.startsNotResumed, reason);...
}
WindowManagerGlobal.java

frameworks/base/core/java/android/view/WindowManagerGlobal.java

public void addView(...) {// 创建ViewRootImpl对象root = new ViewRootImpl(view.getContext(), display);...try {// 执行ViewRootImpl的setView函数root.setView(view, wparams, panelParentView, userId);} catch (RuntimeException e) {...} 
}

从上面代码可以看出,应用进程这边在接收到系统Binder调用请求后,在主线程中Activiy Resume的流程主要步骤如下

  1. 执行应用ActivityonResume生命周期函数;
  2. 执行WindowManager的addView动作开启视图绘制逻辑;
  3. 创建Activity的ViewRootImpl对象;
  4. 执行ViewRootImplsetView函数开启UI界面绘制动作
以上过程从trace分析如下:

activityResume.png

5. Choreographer

5.1 Choreographer的作用

Choreographer 的引入,主要是配合系统Vsync垂直同步机制,在 Android 渲染链路扮演中承上启下的角色

承上:负责接收和处理 App 的各种更新消息和回调,等到 Vsync 到来的时候统一处理。比如集中处理 Input(主要是 Input 事件的处理) 、Animation(动画相关)、Traversal(包括 measure、layout、draw 等操作) ,判断卡顿掉帧情况,记录 CallBack 耗时等

启下:负责请求和接收 Vsync 信号。接收 Vsync 事件回调(通过 FrameDisplayEventReceiver.onVsync );请求 Vsync(FrameDisplayEventReceiver.scheduleVsync)

从上面可以看出来, Choreographer 担任的是一个工具人的角色,他之所以重要,是因为通过 Choreographer + SurfaceFlinger + Vsync + TripleBuffer 这一套从上到下的机制,保证了 Android App 可以以一个稳定的帧率运行(20fps、90fps 或者 60fps),减少帧率波动带来的不适感。

5.2 ViewRootImpl

接上一节的分析,应用主线程中在执行Activity的Resume流程的最后,会创建ViewRootImpl对象并调用其setView函数,从此并开启了应用界面UI布局与绘制的流程。

我们从ViewRootImpl的setView流程继续结合代码往下看:

ViewRootImpl.java

frameworks/base/core/java/android/view/ViewRootImpl.java

public void setView(View view, WindowManager.LayoutParams attrs, View panelParentView,int userId) {synchronized (this) {if (mView == null) {mView = view;}...// 开启绘制硬件加速,初始化RenderThread渲染线程运行环境enableHardwareAcceleration(attrs);...// 1.触发绘制动作requestLayout();...inputChannel = new InputChannel();...// 2.Binder调用访问系统窗口管理服务WMS接口,实现addWindow添加注册应用窗口的操作,并传入inputChannel用于接收触控事件res = mWindowSession.addToDisplayAsUser(mWindow, mWindowAttributes,getHostVisibility(), mDisplay.getDisplayId(), userId,mInsetsController.getRequestedVisibleTypes(), inputChannel, mTempInsets,mTempControls, attachedFrame, compatScale);...// 3.创建WindowInputEventReceiver对象,实现应用窗口接收触控事件mInputEventReceiver = new WindowInputEventReceiver(inputChannel,Looper.myLooper());...// 4.设置DecorView的mParent为ViewRootImplview.assignParent(this);...}
}

从以上代码可以看出ViewRootImpl的setView内部关键流程如下:

  1. requestLayout()通过一系列调用触发界面绘制(measure、layout、draw)动作
  2. 通过Binder调用访问系统窗口管理服务WMSaddWindow接口实现添加、注册应用窗口的操作,并传入本地创建inputChannel对象用于后续接收系统的触控事件,这一步执行完我们的View就可以显示到屏幕上了。关于WMS的内部实现流程也非常复杂,由于篇幅有限本文就不详细展开分析了。
  3. 创建WindowInputEventReceiver对象,封装实现应用窗口接收系统触控事件的逻辑;
  4. 执行view.assignParent(this),设置DecorView的mParent为ViewRootImpl。所以,虽然ViewRootImpl不是一个View,但它是所有View的顶层Parent。

我们顺着ViewRootImpl的requestLayout动作继续往下看界面绘制的流程代码:

frameworks/base/core/java/android/view/ViewRootImpl.java

public void requestLayout() {if (!mHandlingLayoutInLayoutRequest) {// 检查当前UI绘制操作是否发生在主线程,如果发生在子线程则会抛出异常checkThread();mLayoutRequested = true;// 触发绘制操作scheduleTraversals();}
}@UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553)
void scheduleTraversals() {if (!mTraversalScheduled) {...// 注意此处会往主线程的MessageQueue消息队列中添加同步栏删,因为系统绘制消息属于异步消息,需要更高优先级的处理mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();// 通过Choreographer往主线程消息队列添加CALLBACK_TRAVERSAL绘制类型的待执行消息,用于触发后续UI线程真正实现绘制动作mChoreographer.postCallback(Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);...}
}

ViewRootImpl会调用Choreographer的postCallback接口放入待执行的绘制消息后,Choreographer会先向系统申请APP 类型的vsync信号,然后等待系统vsync信号到来后,去回调到ViewRootImpl的doTraversal函数中执行真正的绘制动作(measure、layout、draw)。

我们接着ViewRootImpl的doTraversal函数的简化代码流程往下看:

frameworks/base/core/java/android/view/ViewRootImpl.java

void doTraversal() {if (mTraversalScheduled) {mTraversalScheduled = false;// 调用removeSyncBarrier及时移除主线程MessageQueue中的Barrier同步栏删,以避免主线程发生“假死”mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);...// 执行具体的绘制任务performTraversals();...}
}private void performTraversals() {...// 1.从DecorView根节点出发,遍历整个View控件树,完成整个View控件树的measure测量操作windowSizeMayChange |= measureHierarchy(...);...if (mFirst...) {// 2.第一次执行traversals绘制任务时,Binder调用访问系统窗口管理服务WMS的relayoutWindow接口,实现WMS计算应用窗口尺寸并向系统surfaceflinger正式申请Surface“画布”操作relayoutResult = relayoutWindow(params, viewVisibility, insetsPending);}...// 3.从DecorView根节点出发,遍历整个View控件树,完成整个View控件树的layout测量操作performLayout(lp, mWidth, mHeight);...// 4.从DecorView根节点出发,遍历整个View控件树,完成整个View控件树的draw测量操作performDraw();...
}private int relayoutWindow(WindowManager.LayoutParams params, int viewVisibility,boolean insetsPending) throws RemoteException {...// 通过Binder IPC访问系统WMS服务的relayout接口,申请Surface“画布”操作relayoutResult = mWindowSession.relayout(mWindow, params,requestedWidth, requestedHeight, viewVisibility,insetsPending ? WindowManagerGlobal.RELAYOUT_INSETS_PENDING : 0, mRelayoutSeq,mLastSyncSeqId, mTmpFrames, mPendingMergedConfiguration, mSurfaceControl,mTempInsets, mTempControls, mRelayoutBundle);....if (mSurfaceControl.isValid()) {if (!useBLAST()) {// 本地Surface对象获取指向远端分配的Surface的引用mSurface.copyFrom(mSurfaceControl);} else {...}}...
}private void performMeasure(int childWidthMeasureSpec, int childHeightMeasureSpec) {...// 原生标识View树的measure测量过程的trace tagTrace.traceBegin(Trace.TRACE_TAG_VIEW, "measure");try {// 从mView指向的View控件树的根节点DecorView出发,遍历访问整个View树,并完成整个布局View树的测量工作mView.measure(childWidthMeasureSpec, childHeightMeasureSpec);} finally {Trace.traceEnd(Trace.TRACE_TAG_VIEW);}
}private void performDraw() {...boolean canUseAsync = draw(fullRedrawNeeded);...
}private boolean draw(boolean fullRedrawNeeded) {...if (mAttachInfo.mThreadedRenderer != null && mAttachInfo.mThreadedRenderer.isEnabled()) {...// 如果开启并支持硬件绘制加速,则走硬件绘制的流程(从Android 4.+开始,默认情况下都是支持跟开启了硬件加速的)mAttachInfo.mThreadedRenderer.draw(mView, mAttachInfo, this);} else {// 否则走drawSoftware软件绘制的流程if (!drawSoftware(surface, mAttachInfo, xOffset, yOffset,scalingRequired, dirty, surfaceInsets)) {return false;}}
}

从上面的代码流程可以看出,ViewRootImpl中负责的整个应用界面绘制的主要流程如下

  1. 从界面View控件树的根节点DecorView出发,递归遍历整个View控件树,完成对整个View控件树的measure测量操作,由于篇幅所限,本文就不展开分析这块的详细流程;
  2. 界面第一次执行绘制任务时,会通过Binder IPC访问系统窗口管理服务WMS的relayout接口,实现窗口尺寸的计算并向系统申请用于本地绘制渲染的Surface“画布”的操作(具体由SurfaceFlinger负责创建应用界面对应的BufferQueueLayer对象,并通过内存共享的方式通过Binder将地址引用透过WMS回传给应用进程这边),由于篇幅所限,本文就不展开分析这块的详细流程;
  3. 从界面View控件树的根节点DecorView出发,递归遍历整个View控件树,完成对整个View控件树的layout测量操作;
  4. 从界面View控件树的根节点DecorView出发,递归遍历整个View控件树,完成对整个View控件树的draw测量操作,如果开启并支持硬件绘制加速(从Android 4.X开始谷歌已经默认开启硬件加速),则走GPU硬件绘制的流程,否则走CPU软件绘制的流程

5.3 以上过程从trace分析如下:

借用一张图来总结应用UI绘制的流程,如下所示:

UI绘制流程.png

6. RenderThread

目前为止,用户依然看不到屏幕上显示的应用界面内容,因为整个Android系统的显示流程除了前面讲到的UI线程的绘制外,界面还需要经过RenderThread线程的渲染处理,渲染完成后,还需要通过Binder调用“上帧”交给surfaceflinger进程中进行合成后送显才能最终显示到屏幕上。

我们将接上一节中ViewRootImpl中最后draw的流程继续往下分析开启硬件加速情况下,RenderThread渲染线程的工作流程。由于目前Android 4.X之后系统默认界面是开启硬件加速的,所以本文我们重点分析硬件加速条件下的界面渲染流程,我们先分析一下简化的代码流程:

6.1 硬件加速绘制

ViewRootImpl.java

frameworks/base/core/java/android/view/ViewRootImpl.java

private boolean draw(boolean fullRedrawNeeded) {...if (mAttachInfo.mThreadedRenderer != null && mAttachInfo.mThreadedRenderer.isEnabled()) {...// 硬件加速条件下的界面渲染流程mAttachInfo.mThreadedRenderer.draw(mView, mAttachInfo, this);} else {...}
}

ThreadedRenderer.java

frameworks/base/core/java/android/view/ThreadedRenderer.java

void draw(View view, AttachInfo attachInfo, DrawCallbacks callbacks) {...// 1.从DecorView根节点出发,递归遍历View控件树,记录每个View节点的绘制操作命令,完成绘制操作命令树的构建updateRootDisplayList(view, callbacks);...// 2.JNI调用同步Java层构建的绘制命令树到Native层的RenderThread渲染线程,并唤醒渲染线程利用OpenGL执行渲染任务;int syncResult = syncAndDrawFrame(frameInfo);...
}

从上面的代码可以看出,硬件加速绘制主要包括两个阶段

  1. 从DecorView根节点出发,递归遍历View控件树,记录每个View节点的drawOp绘制操作命令,完成绘制操作命令树的构建;
  2. JNI调用同步Java层构建的绘制命令树到Native层的RenderThread渲染线程,并唤醒渲染线程利用OpenGL执行渲染任务;

6.2 构建绘制命令树

我们先来看看第一阶段构建绘制命令树的代码简化流程:

6.2.1 源码分析如下:

ThreadedRenderer.java

frameworks/base/core/java/android/view/ThreadedRenderer.java

private void updateRootDisplayList(View view, DrawCallbacks callbacks) {// 原生标记构建View绘制操作命令树过程的systrace tagTrace.traceBegin(Trace.TRACE_TAG_VIEW, "Record View#draw()");// 递归子View的updateDisplayListIfDirty实现构建DisplayListOpupdateViewTreeDisplayList(view);...if (mRootNodeNeedsUpdate || !mRootNode.hasDisplayList()) {// 获取根View的SkiaRecordingCanvasRecordingCanvas canvas = mRootNode.beginRecording(mSurfaceWidth, mSurfaceHeight);try {...// 利用canvas缓存DisplayListOp绘制命令canvas.drawRenderNode(view.updateDisplayListIfDirty());...} finally {// 将所有DisplayListOp绘制命令填充到RootRenderNode中mRootNode.endRecording();}}Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}private void updateViewTreeDisplayList(View view) {...// 从DecorView根节点出发,开始递归调用每个View树节点的updateDisplayListIfDirty函数view.updateDisplayListIfDirty();...
}
View.java

frameworks/base/core/java/android/view/View.java

public RenderNode updateDisplayListIfDirty() {...// 1.利用`View`对象构造时创建的`RenderNode`获取一个`SkiaRecordingCanvas`“画布”;final RecordingCanvas canvas = renderNode.beginRecording(width, height);try {...if ((mPrivateFlags & PFLAG_SKIP_DRAW) == PFLAG_SKIP_DRAW) {// 如果仅仅是ViewGroup,并且自身不用绘制,直接递归子ViewdispatchDraw(canvas);...} else {// 2.利用SkiaRecordingCanvas,在每个子View控件的onDraw绘制函数中调用drawLine、drawRect等绘制操作时,创建对应的DisplayListOp绘制命令,并缓存记录到其内部的SkiaDisplayList持有的DisplayListData中;draw(canvas);}} finally {// 3.将包含有`DisplayListOp`绘制命令缓存的`SkiaDisplayList`对象设置填充到`RenderNode`中;renderNode.endRecording();...}...
}@CallSuper
public void draw(@NonNull Canvas canvas) {...// draw the content(View自己实现的onDraw绘制,由应用开发者自己实现)onDraw(canvas);...// draw the childrendispatchDraw(canvas);...
}
RenderNode.java

frameworks/base/graphics/java/android/graphics/RenderNode.java

public void endRecording() {if (mCurrentRecordingCanvas == null) {throw new IllegalStateException("No recording in progress, forgot to call #beginRecording()?");}RecordingCanvas canvas = mCurrentRecordingCanvas;mCurrentRecordingCanvas = null;// 从SkiaRecordingCanvas中获取SkiaDisplayList对象canvas.finishRecording(this);// 将SkiaDisplayList对象填充到RenderNode中canvas.recycle();
}

从以上代码可以看出,构建绘制命令树的过程是从View控件树的根节点DecorView触发,递归调用每个子View节点的updateDisplayListIfDirty函数,最终完成绘制树的创建,简述流程如下

  1. 利用View对象构造时创建的RenderNode获取一个SkiaRecordingCanvas“画布”;
  2. 利用SkiaRecordingCanvas,在每个子View控件的onDraw绘制函数中调用drawLinedrawRect等绘制操作时,创建对应的DisplayListOp绘制命令,并缓存记录到其内部的SkiaDisplayList持有的DisplayListData
  3. 将包含有DisplayListOp绘制命令缓存的SkiaDisplayList对象设置填充到RenderNode中;
  4. 最后将根View的缓存DisplayListOp设置到RootRenderNode中,完成构建。

6.2.2 以上过程从trace分析如下:

构建View绘制命令树.png

6.3 执行渲染绘制任务

经过上一小节中的分析,应用在UI线程中从根节点DecorView出发,递归遍历每个子View节点,搜集其drawXXX绘制动作并转换成DisplayListOp命令,将其记录到DisplayListData并填充到RenderNode中,最终完成整个View绘制命令树的构建。从此UI线程的绘制任务就完成了。下一步UI线程将唤醒RenderThread渲染线程,触发其利用OpenGL执行界面的渲染任务,本小节中我们将重点分析这个流程。

6.3.1 源码分析如下:

HardwareRenderer.java

frameworks/base/graphics/java/android/graphics/HardwareRenderer.java

public int syncAndDrawFrame(@NonNull FrameInfo frameInfo) {// JNI调用native层的相关函数return nSyncAndDrawFrame(mNativeProxy, frameInfo.frameInfo, frameInfo.frameInfo.length);
}
android_graphics_HardwareRenderer.cpp

frameworks/base/libs/hwui/jni/android_graphics_HardwareRenderer.cpp

static int android_view_ThreadedRenderer_syncAndDrawFrame(JNIEnv* env, jobject clazz,jlong proxyPtr, jlongArray frameInfo,jint frameInfoSize) {...RenderProxy* proxy = reinterpret_cast<RenderProxy*>(proxyPtr);env->GetLongArrayRegion(frameInfo, 0, frameInfoSize, proxy->frameInfo());return proxy->syncAndDrawFrame();
}

RenderProxy.cpp

frameworks/base/libs/hwui/renderthread/RenderProxy.cpp

int RenderProxy::syncAndDrawFrame() {// 唤醒RenderThread渲染线程,执行DrawFrame绘制任务return mDrawFrameTask.drawFrame();
}
DrawFrameTask.cpp

frameworks/base/libs/hwui/renderthread/DrawFrameTask.cpp

int DrawFrameTask::drawFrame() {...postAndWait();...
}void DrawFrameTask::postAndWait() {AutoMutex _lock(mLock);// 向RenderThread渲染线程的MessageQueue消息队列放入一个待执行任务,以将其唤醒执行run函数mRenderThread->queue().post([this]() { run(); });// UI线程暂时进入wait等待状态mSignal.wait(mLock);
}void DrawFrameTask::run() {// 原生标识一帧渲染绘制任务的systrace tagATRACE_NAME("DrawFrame");...{TreeInfo info(TreeInfo::MODE_FULL, *mContext);//1.将UI线程构建的DisplayListOp绘制命令树同步到RenderThread渲染线程canUnblockUiThread = syncFrameState(info);...}...// 同步完成后则可以唤醒UI线程// From this point on anything in "this" is *UNSAFE TO ACCESS*if (canUnblockUiThread) {unblockUiThread();}...if (CC_LIKELY(canDrawThisFrame)) {// 2.执行draw渲染绘制动作context->draw(solelyTextureViewUpdates);} else {...}...
}bool DrawFrameTask::syncFrameState(TreeInfo& info) {ATRACE_CALL();...// 调用CanvasContext的prepareTree函数实现绘制命令树同步的流程mContext->prepareTree(info, mFrameInfo, mSyncQueued, mTargetNode);...
}
CanvasContext.cpp
void CanvasContext::prepareTree(TreeInfo& info, int64_t* uiFrameInfo, int64_t syncQueued,RenderNode* target) {...for (const sp<RenderNode>& node : mRenderNodes) {...// 递归调用各个子View对应的RenderNode执行prepareTree动作node->prepareTree(info);...}...
}
RenderNode.cpp

frameworks/base/libs/hwui/RenderNode.cpp


void RenderNode::prepareTree(TreeInfo& info) {ATRACE_CALL();...prepareTreeImpl(observer, info, false);...
}void RenderNode::prepareTreeImpl(TreeObserver& observer, TreeInfo& info, bool functorsNeedLayer) {...if (info.mode == TreeInfo::MODE_FULL) {// 同步绘制命令树pushStagingDisplayListChanges(observer, info);}if (mDisplayList) {// 遍历调用各个子View对应的RenderNode的prepareTreeImplbool isDirty = mDisplayList.prepareListAndChildren(observer, info, childFunctorsNeedLayer,[this](RenderNode* child, TreeObserver& observer, TreeInfo& info,bool functorsNeedLayer) {child->prepareTreeImpl(observer, info, functorsNeedLayer);mHasHolePunches |= child->hasHolePunches();});
.....}.
}void RenderNode::pushStagingDisplayListChanges(TreeObserver& observer, TreeInfo& info) {...syncDisplayList(observer, &info);...
}void RenderNode::syncDisplayList(TreeObserver& observer, TreeInfo* info) {...// 完成赋值同步DisplayList对象deleteDisplayList(observer, info);mDisplayList = std::move(mStagingDisplayList);...
}
CanvasContext.cpp

/frameworks/base/libs/hwui/renderthread/CanvasContext.cpp

void CanvasContext::draw() {...// 1.调用OpenGL库使用GPU,按照构建好的绘制命令完成界面的渲染drawResult = mRenderPipeline->draw(frame, windowDirty, dirty, mLightGeometry,&mLayerUpdateQueue, mContentDrawBounds, mOpaque,mLightInfo, mRenderNodes, &(profiler()), mBufferParams);...// 2.将前面已经绘制渲染好的图形缓冲区Binder上帧给SurfaceFlinger合成和显示bool didSwap = mRenderPipeline->swapBuffers(frame, drawResult.success, windowDirty,mCurrentFrameInfo, &requireSwap);
}

从以上代码可以看出:UI线程利用RenderProxy向RenderThread线程发送一个DrawFrameTask任务请求,RenderThread被唤醒,开始渲染,大致流程如下

  1. syncFrameState中遍历View树上每一个RenderNode,执行prepareTreeImpl函数,实现同步绘制命令树的操作;
  2. 调用OpenGL库API使用GPU,按照构建好的绘制命令完成界面的渲染(具体过程,由于本文篇幅所限,暂不展开分析);
  3. 将前面已经绘制渲染好的图形缓冲区Binder上帧给SurfaceFlinger合成和显示;

6.3.2 以上过程从trace分析如下:

RenderThread实现界面渲染.png

7. SurfaceFlinger合成显示

SurfaceFlinger合成显示部分完全属于Android系统GUI中图形显示的内容,逻辑结构也比较复杂,但不属于本文介绍内容的重点。所以本小节中只是总体上介绍一下其工作原理与思想,不再详细分析源码,感兴趣的读者可以关注笔者后续的文章再来详细分析讲解。简单的说SurfaceFlinger作为系统中独立运行的一个Native进程,借用Android官网的描述,其职责就是负责接受来自多个来源的数据缓冲区,对它们进行合成,然后发送到显示设备。如下图所示:
 

SurfaceFlinger工作原理.jpg


从上图可以看出,其实SurfaceFlinger在Android系统的整个图形显示系统中是起到一个承上启下的作用

  • 对上:通过Surface与不同的应用进程建立联系,接收它们写入Surface中的绘制缓冲数据,对它们进行统一合成。
  • 对下:通过屏幕的后缓存区与屏幕建立联系,发送合成好的数据到屏幕显示设备。

图形的传递是通过Buffer作为载体,Surface是对Buffer的进一步封装,也就是说Surface内部具有多个Buffer供上层使用,如何管理这些Buffer呢?答案就是BufferQueue ,下面我们来看看BufferQueue的工作原理:

7.1 BufferQueue机制

借用一张经典的图来描述BufferQueue的工作原理:
 

BufferQueue状态转换图.jpg


BufferQueue是一个典型的生产者-消费者模型中的数据结构。在Android应用的渲染流程中,应用扮演的就是“生产者”的角色,而SurfaceFlinger扮演的则是“消费者”的角色,其配合工作的流程如下

  1. 应用进程中在开始界面的绘制渲染之前,需要通过Binder调用dequeueBuffer接口从SurfaceFlinger进程中管理的BufferQueue 中申请一张处于free状态的可用Buffer,如果此时没有可用Buffer则阻塞等待;
  2. 应用进程中拿到这张可用的Buffer之后,选择使用CPU软件绘制渲染或GPU硬件加速绘制渲染,渲染完成后再通过Binder调用queueBuffer接口将缓存数据返回给应用进程对应的BufferQueue(如果是 GPU 渲染的话,这里还有个 GPU处理的过程,所以这个 Buffer 不会马上可用,需要等 GPU 渲染完成的Fence信号),并申请sf类型的Vsync以便唤醒“消费者”SurfaceFlinger进行消费;
  3. SurfaceFlinger 在收到 Vsync 信号之后,开始准备合成,使用 acquireBuffer获取应用对应的 BufferQueue 中的 Buffer 并进行合成操作;
  4. 合成结束后,SurfaceFlinger 将通过调用 releaseBuffer将 Buffer 置为可用的free状态,返回到应用对应的 BufferQueue中。

7.2 Vsync同步机制

Vysnc垂直同步是Android在“黄油计划”中引入的一个重要机制,本质上是为了协调BufferQueue的应用生产者生成UI数据动作和SurfaceFlinger消费者的合成消费动作,避免出现画面撕裂的Tearing现象。Vysnc信号分为两种类型:

  1. app类型的Vsync:app类型的Vysnc信号由上层应用中的Choreographer根据绘制需求进行注册和接收,用于控制应用UI绘制上帧的生产节奏。根据第7小结中的分析:应用在UI线程中调用invalidate刷新界面绘制时,需要先透过Choreographer向系统申请注册app类型的Vsync信号,待Vsync信号到来后,才能往主线程的消息队列放入待绘制任务进行真正UI的绘制动作;
  2. sf类型的Vsync:sf类型的Vsync是用于控制SurfaceFlinger的合成消费节奏。应用完成界面的绘制渲染后,通过Binder调用queueBuffer接口将缓存数据返还给应用对应的BufferQueue时,会申请sf类型的Vsync,待SurfaceFlinger 在其UI线程中收到 Vsync 信号之后,便开始进行界面的合成操作。

Vsync信号的生成是参考屏幕硬件的刷新周期的,其架构如下图所示:
 

vsync.png

7.3 trace上SurfaceFlinger工作的流程如下图所示:

SurfaceFlinger处理.png

8.总结

本文结合Android 14源码和Perfetto分析了从用户手指点击桌面上的应用图标到屏幕上显示出应用主Activity界面第一帧画面的完整流程,这其中涉及了App应用、system_server框架、surfaceflinger等一系列Android系统核心模块的相互配合,有很多的细节也由于篇幅所限无法完全展开分析,感兴趣的读者可以结合AOSP源码继续深入分析。而优化应用启动打开的速度这个系统核心用户体验的指标,也是多少年来谷歌、SOC芯片厂商、ODM手机厂商以及各个应用开发者共同努力优化的方向:

  • 对于SOC芯片厂商而言:需要不断升级CPU和GPU的硬件算力;
  • 对于Android系统的维护者谷歌而言:在Android系统大版本升级过程中,不断的优化应用启动过程上的各个系统流程,比如进程创建的速度优化、Art虚拟机的引入与性能优化、View绘制流程的简化、硬件绘制加速机制的引入、系统核心AMS、WMS等核心服务的锁优化等;
  • 对于各个ODM手机厂商而言:开发识别应用启动的场景,进行针对性的CPU主频的拉升调节、触控响应速度的优化等机制;
  • 对于各个应用开发者而言:会结合自己的业务对应用启动的场景进行优化,比如尽量减少或推迟在Application、Activity生命周期函数中的初始化逻辑、去除界面布局的过度绘制、异步化的布局XML文件解析等机制。

9.参考文档

Search

Android应用启动全流程分析(源码深度剖析) - 简书

理解Android硬件加速原理的小白文 - 简书

Perfetto详细解析-CSDN博客

https://www.androidperformance.com/2021/04/24/android-systrace-smooth-in-action-1/
史上最全Android渲染机制讲解(长文源码深度剖析)https://mp.weixin.qq.com/s?__biz=MzU2MTk0ODUxOQ==&mid=2247483782&idx=1&sn=f9eae167b217c83036b3a24cd4182cd1&chksm=fc71b38ecb063a9847f4518802fc541091d7f708b112399ec39827e68a6f590249748d643747&mpshare=1&scene=1&srcid=0224RGsfWeG5GyMpxLwEhx7N&sharer_sharetime=1582507745901&sharer_shareid=2d76fc4769fc55b6ca84ec3820ba5821#rd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/796118.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024.4.5|牛客小白月赛90

2024.4.5|牛客小白月赛90 A.小A的文化节 B.小A的游戏 C.小A的数字 D.小A的线段&#xff08;easy version&#xff09; E.小A的任务 F.小A的线段&#xff08;hard version&#xff09; 心有猛虎&#xff0c;细嗅蔷薇。你好朋友&#xff0c;这里是锅巴的C\C学习笔记&#xff0c…

[报错解决]源服务器未能找到目标资源的表示或者是不愿公开一个已经存在的资源表示。

目录 报错信息解决办法 spring整合mvc时&#xff0c;遇到的404报错&#xff0c;梳理mvc知识供参考供 报错信息 解决办法 Controller RequestMapping("user") public class UserController {//spring整合webmvc// 请求地址 http://localhost:7070/user/quickRequest…

数据字典

文章目录 一、需求分析二、表设计&#xff08;两张表&#xff09;三、功能实现3.1 数据字典功能3.1.1 列表功能3.1.2 新增数据字典3.1.3 编辑数据字典 3.2 数据字典明细3.2.1 列表功能3.2.2 新增字典明细3.2.3 编辑字典明细 3.3 客户管理功能3.3.1 列表功能3.3.2 新增用户3.3.3…

Golang | Leetcode Golang题解之第11题盛最多水的容器

题目&#xff1a; 题解&#xff1a; func maxArea(height []int) int {res : 0L : 0R : len(height) - 1for L < R {tmp : math.Min(float64(height[L]), float64(height[R]))res int(math.Max(float64(res), tmp * float64((R - L))))if height[L] < height[R] {L} el…

【环境变量】基本概念理解 | 查看环境变量echo | PATH的应用和修改

目录 前言 基本概念&理解 注意的点 查看环境变量方法 PATH环境变量 PTAH应用系统指令 PTAH应用用户程序 命令行的修改&#xff08;内存级&#xff09; 配置文件的修改 windows环境变量 大家天天开心&#x1f642; bash进程的流程。环境变量在系统指令和用户…

Linux网卡IP地址配置错误的影响

在Linux系统中&#xff0c;网络配置是保持系统顺畅运行的关键一环。正确配置网卡的IP地址对于确保网络通信的准确性和效率至关重要。然而&#xff0c;如果在这个过程中发生错误&#xff0c;可能会带来一系列问题。让我们一起探讨一下&#xff0c;如果Linux网卡的IP地址配置错误…

Python+Yolov8框选位置目标识别人数统计计数

程序示例精选 PythonYolov8框选位置目标识别人数统计计数 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对《PythonYolov8框选位置目标识别人数统计计数》编写代码&#xff0c;代码整洁&#…

测开——基础理论面试题整理

1. 测试流程 需求了解分析需求评审制定测试计划【包括测试人员、时间、每人负责的模块、测试的风险项以及预防】编写自动化测试用例 —— 测试评审【尽量丰富测试点】编写测试框架和脚本&#xff08;若是功能测试 可省去这步骤&#xff09;执行测试提交缺陷报告测试分析与评审…

Coursera上托福专项课程02:TOEFL Speaking and Writing Sections Skills Mastery 学习笔记

TOEFL Speaking and Writing Sections Skills Mastery Course Certificate 本文是学习 https://www.coursera.org/learn/toefl-speaking-writing-sections-skills-mastery 这门课的学习笔记&#xff0c;如有侵权&#xff0c;请联系删除。 文章目录 TOEFL Speaking and Writing…

docker-ce部署

目录 1. 更新软件包列表 2. 安装必要的软件包&#xff0c;以允许 apt 使用 HTTPS 3. 添加 Docker 的官方 GPG 密钥 4. 设置 Docker CE 的稳定存储库 5. 再次更新包索引以及安装 Docker CE 6. 验证 Docker CE 是否正确安装 7. 将当前用户添加到 docker 用户组&#xff0c;…

Linux之shell脚本编辑工具awk

华子目录 概念工作流程工作图流程&#xff08;按行处理&#xff09; awk程序执行方式1.通过命令行执行awk程序实例 2.awk命令调用脚本执行实例 3.直接使用awk脚本文件调用实例 awk命令的基本语法格式BEGIN模式与END模式实例awk的输出 记录和域&#xff08;记录表示数据行&#…

【陈老板赠书活动 - 25期】- 《Effective Java》

陈老老老板&#x1f9d9;‍♂️ &#x1f46e;‍♂️本文专栏&#xff1a;赠书活动专栏&#xff08;为大家争取的福利&#xff0c;免费送书&#xff09; &#x1f934;本文简述&#xff1a;活就像海洋,只有意志坚强的人,才能到达彼岸。 &#x1f473;‍♂️上一篇文章&#xff…

行人重识别项目 | 基于Pytorch实现ReID行人重识别算法

项目应用场景 面向行人重识别场景&#xff0c;项目具有轻量化 (训练的时候也只需要 2GB 的显存占用)、性能好 (只使用 softmax 损失就能够达到 Rank188.24%, mAP70.68%)&#xff0c;另外提供友好的上手项目流程教程 项目效果&#xff1a; 项目流程 > 具体参见项目内README.…

利用Flutter混淆工具提高应用的反编译难度

在移动应用开发中&#xff0c;保护应用代码安全至关重要。Flutter 提供了简单易用的混淆工具&#xff0c;帮助开发者在构建 release 版本应用时有效保护代码。本文将介绍如何在 Flutter 应用中使用混淆&#xff0c;并提供了相关的操作步骤和注意事项。 &#x1f4dd; 摘要 本…

第十四届蓝桥杯大赛软件赛省赛

第十四届蓝桥杯大赛软件赛省赛 2.日期统计 小蓝现在有一个长度为 100 的数组&#xff0c;数组中的每个元素的值都在 0 到 9 的范围之内。 数组中的元素从左至右如下所示&#xff1a; 5 6 8 6 9 1 6 1 2 4 9 1 9 8 2 3 6 4 7 7 5 9 5 0 3 8 7 5 8 1 5 8 6 1 8 3 0 3 7 9 2 7 …

【Linux】Linux C 编程

在 Windows 下编程首先就是安装对应的 IDE &#xff0c;然后在 IDE 里面进行代码编写和编译&#xff0c;但是在 Linux 下&#xff0c;这两个部分是分开的&#xff0c;比如我们可以使用 vim 编辑器编写代码&#xff0c;然后用 gcc 编译器编译代码。Ubuntu 下有一些可以进行编程的…

03-JAVA设计模式-工厂模式详解

工厂模式 工厂设计模式是一种创建型设计模式&#xff0c;它提供了一种封装对象创建过程的机制&#xff0c;将对象的创建与使用分离。 这种设计模式允许我们在不修改客户端代码的情况下引入新的对象类型。 在Java中&#xff0c;工厂设计模式主要有三种形式&#xff1a;简单工厂…

2023-01-05(星期四)-恶意垃圾邮件导致agenttesla变体感染,可能是originlogger

前言 参考1 参考2 OriginLogger是一个开源的日志记录器&#xff0c;用于在应用程序中记录和管理日志信息。它提供了一种简单而灵活的方式来记录各种级别的日志&#xff0c;包括调试信息、警告和错误消息等。 AgentTesla病毒主要通过钓鱼邮件进行传播&#xff0c;钓鱼邮件内容多…

C语言解决汉诺塔问题

背景 首先带大家了解一下汉诺塔问题 汉诺塔是一个典型的函数递归问题&#xff0c;汉诺塔描述了这样的场景&#xff0c;有三个柱子&#xff0c;A,B,C&#xff0c;A柱为起始柱&#xff0c;在A柱上面有若干大小不同的盘子&#xff0c;最下面的最大&#xff0c;最上面的最小&#x…

Spring Cloud介绍

一、SpringCloud总体概述 Cloud Foundry Service Broker&#xff1a;通用service集成进入Cloud Foundry Cluster&#xff1a;服务集群 Consul&#xff1a;注册中心 Security&#xff1a;安全认证 Stream&#xff1a;消息队列 Stream App Starters&#xff1a;Spring Cloud Stre…