FJSP:小龙虾优化算法(Crayfsh optimization algorithm,COA)求解柔性作业车间调度问题(FJSP),提供MATLAB代码

一、柔性作业车间调度问题

柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),是一种经典的组合优化问题。在FJSP问题中,有多个作业需要在多个机器上进行加工,每个作业由一系列工序组成,每个工序需要在特定的机器上完成。同时,每个机器一次只能处理一个工序,且每个工序的处理时间可能不同。FJSP问题的目标是找到一个最优的作业调度方案,使得所有作业的完成时间最小化。这个问题的难点在于需要考虑到多个作业、多个机器和多个工序之间的复杂关系,并且需要在有限的时间内找到最优解。
柔性作业车间调度问题( FJSP) 的描述如下:n个工件 { J , J 2 , . . , J n } \{J,J_2,..,J_n\} {J,J2,..,Jn}要在 m m m 台机器 { M 1 , M 2 , . . , M m } \{M_1,M_2,..,M_m\} {M1,M2,..,Mm} 上加工。每个工件包含一道或多道工序,工序顺序是预先确定的,每道工序可以在多台不同加工机器上进行加工,工序的加工时间随加工机器的不同而不同。调度目标是为每道工序选择最合适的机器、确定每台机器上各个工序的最佳加工顺序以及开工时间,使整个系统的某些性能指标达到最优。因此,柔性作业车间调度问题包含两个子问题:确定各工件的加工机器 (机器选择子问题) 和确定各个机器上的加工先后顺序 (工序排序子问题)。

此外,在加工过程中还需要满足下面的约束条件:
(1) 同一台机器同一时刻只能加工一个工件;
(2) 同一工件的同一道工序在同一时刻只能被一台机器加工;
(3) 每个工件的每道工序一旦开始加工不能中断;
(4) 不同工件之间具有相同的优先级;
(5)不同工件的工序之间没有先后约束,同一工件的工序之间有先后约束;
(6)所有工件在零时刻都可以被加工。

1.1符号描述

n : n: n:工件总数;
m : m: m: 机器总数;
i , e : i,e: i,e: 机器序号, i , e = 1 , 2 , 3 , . . . , m i,e=1,2,3,...,m i,e=1,2,3,...,m ;
j , k : j,k: j,k: 工件序号, j , k = 1 , 2 , 3 , . . . , n ; j,k=1,2,3,...,n; j,k=1,2,3,...,n; h j : h_j: hj:工件 j j j 的工序总数;
h , l : h,l: h,l: 工序序号, h = 1 , 2 , 3 , . . . , h j h=1,2,3,...,h_j h=1,2,3,...,hj ;
Ω j h : \Omega_{jh}: Ωjh:工件 j j j 的第 h h h 道工序的可选加工机器集;
m j h : m_{jh}: mjh:工件 j j j 的第 h h h 道工序的可选加工机器数;
O j h : O_{jh}: Ojh:工件 j j j 的第 h h h道工序;
M i j h : M_{ijh}: Mijh:工件 j j j 的第 h h h道工序在机器 i i i 上加工;
p i j h : p_{ijh}: pijh:工件 j j j的第 h h h道工序在机器 i i i上的加工时间;
s j h : s_{jh}: sjh:工件 j j j 的第 h h h 道工序加工开始时间;
c j h : c_{jh}: cjh:工件 j j j的第 h h h道工序加工完成时间;
d j : d_j: dj:工件 j j j 的交货期;
L L L: 一个足够大的正数;
C j C_j Cj: 每个工件的完成时间;
C max ⁡ : C_{\max}: Cmax: 最大完工时间;
T o : T o = ∑ j = 1 n h j T_o:\quad T_o=\sum_{j=1}^nh_j To:To=j=1nhj, 所有工件工序总数;
x i j h = { 1 , 如果工序 O j h 选择机器 i ; 0 , 否则; x_{ijh}=\begin{cases}1,\text{如果工序}O_{jh}\text{选择机器}i;\\0,\text{否则;}\end{cases} xijh={1,如果工序Ojh选择机器i;0,否则;
y i j h k l = { 1 , 如果 O i j h 先于 O i k l 加工 ; 0 , 否则 ; y_{ijhkl}=\begin{cases}1,\text{如果}O_{ijh}\text{先于}O_{ikl}\text{加工};\\0,\text{否则};\end{cases} yijhkl={1,如果Oijh先于Oikl加工;0,否则;

1.2约束条件

C 1 : s j h + x i j h × p i j h ≤ c j h C_{1}:s_{jh}+x_{ijh}\times p_{ijh}\leq c_{jh} C1:sjh+xijh×pijhcjh

其中: i = 1 , … , m ; j = 1 , … , n ; i=1,\ldots,m;j=1,\ldots,n; i=1,,m;j=1,,n; h = 1 , … , h j h=1,\ldots,h_j h=1,,hj
C 2 : c j h ≤ s j ( h + 1 ) C_{2}:c_{jh}\leq s_{j(h+1)} C2:cjhsj(h+1)
其中 : j = 1 , … , n ; h = 1 , . . . , h j − 1 :j=1,\ldots,n;h=1,...,h_j-1 :j=1,,n;h=1,...,hj1
C 3 : c j h j ≤ C max ⁡ C_{3}:c_{jh_j}\leq C_{\max} C3:cjhjCmax
其中: j = 1 , . . . , n j=1,...,n j=1,...,n
C 4 : s j h + p i j h ≤ s k l + L ( 1 − y i j h k l ) C_{4}:s_{jh}+p_{ijh}\leq s_{kl}+L(1-y_{ijhkl}) C4:sjh+pijhskl+L(1yijhkl)

其中 : j = 0 , … , n ; k = 1 , … , n ; h = 1 , … , h j ; l = 1 , … , h k ; i = 1 , … , m :j=0,\ldots,n;k=1,\ldots,n;h=1,\ldots,h_j;l=1,\ldots,h_k;i=1,\ldots,m :j=0,,n;k=1,,n;h=1,,hj;l=1,,hk;i=1,,m
C 5 : c j h ≤ s j ( h + 1 ) + L ( 1 − y i k l j ( h + 1 ) ) C_{5}:c_{jh}\leq s_{j(h+1)}+L(1-y_{iklj(h+1)}) C5:cjhsj(h+1)+L(1yiklj(h+1))

其中 : j = 1 , … , n ; k = 0 , … , n ; h = 1 , … , h j − 1 ; l = 1 , … , h k ; i = 1 , … , m :j=1,\ldots,n;k=0,\ldots,n;h=1,\ldots,h_j-1;\quad l=1,\ldots,h_k;\quad i=1,\ldots,m :j=1,,n;k=0,,n;h=1,,hj1;l=1,,hk;i=1,,m
h 1 : ∑ i = 1 m j h x i j h = 1 h_{1}:\sum_{i=1}^{m_{jh}}x_{ijh}=1 h1:i=1mjhxijh=1
其中: h = 1 , . . . , h j ; j = 1 , . . . , n ; h=1,...,h_j;j=1,...,n; h=1,...,hj;j=1,...,n;

h 2 : ∑ j = 1 n ∑ h = 1 h j y i j h k l = x i k l h_{2}:\sum_{j=1}^n\sum_{h=1}^{h_j}y_{ijhkl}=x_{ikl} h2:j=1nh=1hjyijhkl=xikl

其中: i = 1 , … , m ; k = 1 , … , n ; l = 1 , … , h k i=1,\ldots,m;k=1,\ldots,n;l=1,\ldots,h_k i=1,,m;k=1,,n;l=1,,hk
h 3 : ∑ i = 1 n ∑ i = 1 n k y i j h k l = x i j h h_{3}:\sum_{i=1}^n\sum_{i=1}^{n_k}y_{ijhkl}=x_{ijh} h3:i=1ni=1nkyijhkl=xijh

其中: i = 1 , … , m ; j = 1 , … , n ; h = 1 , … , h k i=1,\ldots,m;j=1,\ldots,n;\quad h=1,\ldots,h_k i=1,,m;j=1,,n;h=1,,hk
C 6 : s j h ≥ 0 , c j h ≥ 0 C_{6}:s_{jh}\geq0,c_{jh}\geq0 C6:sjh0,cjh0

其中 : j = 0 , 1 , . . . , n ; h = 1 , . . . , h j :j=0,1,...,n;h=1,...,h_j :j=0,1,...,n;h=1,...,hj

C 1 C_{1} C1 C 2 C_{2} C2表示每一个工件的工序先后顺序约束 ;
C 3 C_{3} C3表示工件的完工时间的约束,即每一个工件的完工时间不可能超过总的完工时间 ;
C 4 C_{4} C4 C 5 C_{5} C5表示同一时刻同一台机器只能加工一道工序 ;
h 1 h_{1} h1表示机器约束,即同一时刻同一道工序只能且仅能被一台机器加工;
h 2 h_{2} h2 h 3 h_{3} h3表示存在每一台机器上可以存在循环操作 ;
C 6 C_{6} C6表示各个参数变量必须是正数。

1.3目标函数

FJSP的目标函数是最大完工时间最小。完工时间是每个工件最后一道工序完成的时间,其中最大的那个时间就是最大完工时间(makespan)。它是衡量调度方案的最根本指标, 主要体现车间的生产效率,如下式所示:

f = min ⁡ ( max ⁡ l ≤ j ≤ n ( C j ) ) f=\min(\max_{\mathrm{l\leq}j\leq n}(C_j)) f=min(maxljn(Cj))

参考文献:
[1]张国辉.柔性作业车间调度方法研究[D].华中科技大学,2009.

二、算法简介

小龙虾优化算法(Crayfsh optimization algorithm,COA)由Jia Heming 等人于2023年提出,该算法模拟小龙虾的避暑、竞争和觅食行为,具有搜索速度快,搜索能力强,能够有效平衡全局搜索和局部搜索的能力。
参考文献:

[1] Jia, H., Rao, H., Wen, C. et al. Crayfish optimization algorithm. Artif Intell Rev (2023). Crayfish optimization algorithm | SpringerLink

原文链接:https://blog.csdn.net/weixin_46204734/article/details/132939275

三、算法求解FJSP

3.1部分代码

dim=2*sum(operaNumVec);
LB = -jobNum * ones(1, dim);
UB = jobNum * ones(1, dim);
Max_iteration = 100;
SearchAgents_no = 100;
fobj=@(x)fitness(x, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);%% 优化算法求解FJSP
[fMin , bestX, Convergence_curve ] = COA(SearchAgents_no,Max_iteration,LB,UB,dim,fobj);
machineTable=GetMachineTable(bestX, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);%% 画收敛曲线图
figure
plot(Convergence_curve,'r-','linewidth',2)
xlabel('迭代次数')
ylabel('最大完工时间')
legend('COA')
saveas(gca,'1.jpg');

3.2部分结果

在这里插入图片描述
在这里插入图片描述

四、完整MATLAB代码

下方名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/795870.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python-VBA编程500例-033(入门级)

角色定位(Role Positioning)在编程中的实际应用场景主要体现在以下几个方面: 1、权限管理:在开发企业级应用或复杂的系统时,角色定位用于定义和管理用户的权限。例如,一个系统可能有管理员、普通用户、访客等不同角色&#xff0c…

LCD屏幕mmap显示

目录 前言 一.LCD显示 二.LCD颜色显示 2.1 直接显示 2.2 mmap映射显示 前言 mmap是一种内存映射文件的方法,它允许将文件或其它对象映射到进程的地址空间。 使用mmap映射函数进行映射显示,与屏幕普通直接显示相比有很大的优势 一.LCD显示基础 像素、分辨…

二叉树进阶——手撕二叉搜索树

troop主页:troop 手撕二叉搜索树 1.二叉搜索树的定义2.实现(非递归)补充结构2.1查找2.2插入2.3删除(重要)情况1(无孩子&&一个孩子) 3.二叉搜索树的应用3.1K模型3.2KV模型3.2.1KV模型的实现 总结二叉…

Github 2024-04-05Java开源项目日报Top9

根据Github Trendings的统计,今日(2024-04-05统计)共有9个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Java项目9TypeScript项目1OpenAPI 生成器:基于规范自动生成API工具 创建周期:2155 天开发语言:Java协议类型:Apache License 2.0Star数量:1…

linux操作系统安装及命令初识,上岸蚂蚁金服

310 包) desktop 1800个包左右 内容必须大于 768M 系统设置 分区设置 挂载点 /boot / swap 交换分区–占用磁盘容量 网络配置 网卡配置 设置为ON 主机名配置 Begin installation 设置 root 用户密码 命令初识 命令 选项 参数: 命令选项参数…

独角数卡对接码支付收款教程

1、到码支付后台找到支付配置。2、将上面的复制依次填入,具体看下图,随后点立即添加 商户ID商户PID 商户KEY异步不能为空 商户密钥商户密钥

【Python使用】嘿马头条完整开发md笔记第4篇:数据库,1 方案选择【附代码文档】

嘿马头条项目从到完整开发笔记总结完整教程(附代码资料)主要内容讲述:课程简介,ToutiaoWeb虚拟机使用说明1 产品介绍,2 原型图与UI图,3 技术架构,4 开发,1 需求,2 注意事项。数据库,理解ORM1 简介,2 安装,3 数据库连接…

六、从零实战企业级K8S本地部署ThingsBoard专业版集群

1、从 docker hub 拉取 ThingsBoard PE 映像(所有节点) 1.1、查看k8s信息(主节点) kubectl cluster-info #查看k8s集群信息 kubectl get node #查看节点信息 kubectl get pod -A #查看内部组件1.2、从 docker hub 拉取 ThingsBoard PE 映像(所有…

《QT实用小工具·十六》IP地址输入框控件

1、概述 源码放在文章末尾 该项目为IP地址输入框控件,主要包含如下功能: 可设置IP地址,自动填入框。 可清空IP地址。 支持按下小圆点自动切换。 支持退格键自动切换。 支持IP地址过滤。 可设置背景色、边框颜色、边框圆角角度。 下面…

【35分钟掌握金融风控策略5】风控策略开发1

目录 风控策略开发 策略类型划分 单维度策略开发 风控策略开发 在风控过程中,风控策略最终是要直接参与风控决策的,风控策略的好坏会对风控结果产生直接影响,因此,开发有效的风控策略至关重要。 策略类型划分 在实际生产中&…

Redis Desktop Manager可视化工具

可视化工具 Redis https://www.alipan.com/s/uHSbg14XmsL 提取码: 38cl 点击链接保存,或者复制本段内容,打开「阿里云盘」APP ,无需下载极速在线查看,视频原画倍速播放。 官网下载(不推荐):http…

selenium 遮罩层

之前写智联自动投简历 和boss自动投简历的时候 发现操作到上限之后就有个遮罩层,会在当前页面有个顶层得div 没办法获取下面的内容 # 假设遮罩层元素有一个特定的ID或者其他属性 没有id xpath 或者class 都可以mask_element WebDriverWait(driver, 10).until(EC.…

网络网络层之(3)IPv6地址

网络网络层之(3)IPv6协议 Author: Once Day Date: 2024年4月2日 一位热衷于Linux学习和开发的菜鸟,试图谱写一场冒险之旅,也许终点只是一场白日梦… 漫漫长路,有人对你微笑过嘛… 全系列文档可参考专栏:通信网络技术_Once-Day的…

C语言-------内存函数

前面向大家介绍了C语言中的字符函数和字符串函数,今天再向大家介绍一下类似的函数———— C语言中的内存函数。 1. memcpy函数的使用和模拟实现 memcoy函数是一种通过内存来复制内容的一种函数,以字节为基本单位进行,斌并且是一个可以复制…

git可视化工具

Gitkraken GitKraken 是一款专门用于管理和协作Git仓库的图形化界面工具。它拥有友好直观的界面,使得Git的操作变得更加简单易用,尤其适合那些不熟悉Git命令行的开发者。GitKraken提供了丰富的功能,如代码审查、分支管理、仓库克隆、提交、推…

如何使用CSS构建一个瀑布流布局

如何使用CSS构建一个瀑布流布局 瀑布流布局是一种常见的网页布局方式,其中元素以不同的大小排列,且行与列之间没有不均匀的间隙。在瀑布流布局中,即使某一行或列中的元素较短,下一个元素也会占据空间。 如何实现瀑布流布局 实现…

java框架学习——反射概述及简易版框架搭建

前言: 整理下学习笔记,打好基础,daydayup!!! 反射 反射(Reflection):加载类,并允许以编程的方式解剖类中的各种成分(成员变量,方法,构造器等) 1&…

C++之类和对象(上)

目录 1.面向过程和面向对象初步认识 2.类的引入 3.类的定义 4.类的访问限定符及封装 4.1访问限定符 4.2 类的两种定义方式 第一种: 第二种: 4.3封装 5.类的实例化 6.类对象模型 1.面向过程和面向对象初步认识 C语言是面向过程的,…

出门一笑, “栈” 落江横 (Java篇)

本篇会加入个人的所谓‘鱼式疯言’ ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. 🤭🤭🤭可能说的不是那么严谨.但小编初心是能让更多人…

03-自媒体文章发布

自媒体文章发布 1)自媒体前后端搭建 1.1)后台搭建 ①:资料中找到heima-leadnews-wemedia.zip解压 拷贝到heima-leadnews-service工程下,并指定子模块 执行leadnews-wemedia.sql脚本 添加对应的nacos配置 spring:datasource:driver-class-name: com…