使用YOLOv8训练自己的【目标检测】数据集

文章目录

  • 1.收集数据集
    • 1.1 使用开源已标记数据集
    • 1.2 爬取网络图像
    • 1.3 自己拍摄数据集
    • 1.4 使用数据增强生成数据集
    • 1.5 使用算法合成图像
  • 2.标注数据集
    • 2.1确认标注格式
    • 2.2 开始标注
  • 3.划分数据集
  • 4.配置训练环境
    • 4.1获取代码
    • 4.2安装环境
  • 5.训练模型
    • 5.1新建一个数据集yaml文件
    • 5.2预测模型
    • 5.3训练模型
  • 6.验证模型
  • 7.导出模型

1.收集数据集

随着深度学习技术在计算机视觉领域的广泛应用,行人检测和车辆检测等任务已成为热门研究领域。然而,实际应用中,可用的预训练模型可能并不适用于所有应用场景。
例如,虽然预先训练的模型可以检测出行人,但它无法区分“好人”和“坏人”,因为它没有接受相关的训练。因此,我们需要为自定义检测模型提供足够数量的带有标注信息的图像数据,来训练模型以区分“好人”和“坏人”

1.1 使用开源已标记数据集

使用开源数据集是收集数据的最简便方式之一。例如,ImageNet 是一个大型图像数据库,包含超过 1400 万张图像,可用于深度学习模型的训练。此外,像 COCO 、PASCAL VOC 这样的数据集也经常用于目标检测模型的训练和评估。但是这些数据库中的图像通常来自不同的领域和应用场景,因此可能无法完全满足特定研究的需求。
在这里插入图片描述

1.2 爬取网络图像

另一种选择是通过网络搜索图像,并手动选择要下载的图像。然而,由于需要收集大量数据,因此此方法的效率较低。需要注意的是,网络上的图像可能受到版权保护。在使用这些图像之前,务必检查图像的版权信息。
或者,您可以编写一个程序来爬取网络并下载所需的图像。但是这需要对数据进行清洗。以确保数据质量。同样需要注意检查每个图像的版权信息。
在这里插入图片描述

1.3 自己拍摄数据集

对于一些特定的应用场景,如自动驾驶和安防监控等,需要收集特定场景下的数据,这时候就需要进行自主拍摄。可以在实际场景中拍摄图像或视频,并对其进行标注,以获得适用于特定场景的高质量数据集。

1.4 使用数据增强生成数据集

我们知道深度学习模型需要大量的数据。当我们只有一个小数据集时,可能不足以训练一个好的模型。在这种情况下,我们可以使用数据增强来生成更多训练数据。
常见的增强方式就是几何变换,类似翻转、裁剪、旋转和平移这些。
在这里插入图片描述

1.5 使用算法合成图像

最后一种获取目标检测数据集的方法是使用合成图像。合成图像是通过使用图像处理软件(例如 Photoshop)在图像中添加对象、更改背景或合成多个图像以创建新的图像。这种方法可以提供一些特殊情况或无法通过其他方式获得的图像,但是合成图像通常无法完全代替真实场景的数据,可能会对模型的准确性产生一定的影响
或者我们可以使用生成对抗网络 (GAN )来生成数据集,
在这里插入图片描述
值得注意的是,收集训练数据集只是我们训练自定义检测模型的第一步。。。接下来我们要个绍如何标注数据集。当然这一步是假设你的图片已经准备完成。
本次案例使用我个人的 月饼数据集

链接: https://pan.baidu.com/s/1-DwTH6roNDSqW4NyqoA3BQ?pwd=25rt 提取码: 25rt 

在这里插入图片描述

2.标注数据集

为什么要标注数据集?标注好的数据集有什么作用呢?答:为了让计算机学会正确地识别物体,我们需要提供大量的标注数据集,这些数集包含了图像或视频中物体的位置和类别信标注数据集的作用在干,它可以帮助计算机学习到如何识别不同种类的物体,并且能够正确地定位它们的位置。通过标注数据集我们可以让计算机逐渐学会如何识别和分类不同种类的物体,例如人、车、动物等等。这些数据集可以被用来训练深度学习模型让模型学会如何识别新的图像或视频中的物体。
举个简单例子:比如说,我们想要让计算机自动识别图像中的猫和狗。为了让计算机学会如何识别这两个物体,我们需要提供一些图像样本,并在这些样本上标注猫和狗的位置。如果我们没有标注数据集,计算机就无法学习到如何识别猫和狗。即使我们给计算机提供了大量的图像,它也无法准确地区分这两个物体。但是,如果我们有了标注数据集,计算机就可以通过学习这些数据来理解猫和狗之间的差异,并且可以在新的图像中准确地识别它们。
(当然这个例子指的是监督学习)

2.1确认标注格式

YOLOv8 所用数据集格式与 YOLOv5 YOLOv7 相同,采用格式如下:

<object-class-id> <x> <y> <width> <height>

常用的标注工具有很多,比如LabeLImg 、LabeUMe 、VIA等,但是这些工具都需要安装使用,我这里给大家介绍一款在线标注数据集的工具 Make Sense,打开即用,非常的便捷,在标注之前,我们来看一下一般情况下遵循的标注规则:
1.目标框必须框住整个目标物体,不能有遗漏和重叠。
2.目标框应该与目标物体尽可能接近,但不能与目标物体重合
3.目标框的宽度和高度应该为正数,不能为零或负数。
4.如果一张图片中有多个目标物体,每个目标物体应该用一个独立的目标框进行标注,不允许多个目标共用一个框.
5.如果目标物体的形状不规则,可以使用多个框进行标注,但必须框住整个目标物体。
6.目标框的坐标必须在数据集中统一。

2.2 开始标注

确认好标注格式后我们就可以开始标注了,进入网页后点击 Get started 开始使用。
在这里插入图片描述
首先点击 Drop images 然后 ctrl+A 选中整个数据集里面的图片。
在这里插入图片描述
随后添加标签信息,有几类就添加几个,因为我这里只检测月饼一类,所以只添加一个标签 Moon Cake.

在这里插入图片描述
随后就进入了漫长的标注环节,这里大家一定要认真标注,不然对最终模型的影响还是很大的。
在这里插入图片描述
标注完成后我们点击 Action -> Export Annotation 导出 yolo 格式的标签文件。
在这里插入图片描述
导出之后的标签文件就是这个样子的,我们可以随机抽查几个看看有没有问题。

3.划分数据集

也就是说,我们现在导出后的图片和标签是这个样子的:

Moon_Cake├─images└─all└─labels└─all

但是 YOLO8 所需要的数据集路径的格式是下面这样子的(YOLOv8 支持不止这一种格式),我们接下来要通过脚本来来划分一下数据集。

├── yolov8_dataset└── train└── images (folder including all training images)└── labels (folder including all training labels)└── test└── images (folder including all testing images)└── labels (folder including all testing labels)└── valid└── images (folder including all testing images)└── labels (folder including all testing labels)

具体其实只要修改路径就行了,代码我都做了注释。

import os
import random
import shutildef copy_files(src_dir, dst_dir, filenames, extension):os.makedirs(dst_dir, exist_ok=True)missing_files = 0for filename in filenames:src_path = os.path.join(src_dir, filename + extension)dst_path = os.path.join(dst_dir, filename + extension)# Check if the file exists before copyingif os.path.exists(src_path):shutil.copy(src_path, dst_path)else:print(f"Warning: File not found for {filename}")missing_files += 1return missing_filesdef split_and_copy_dataset(image_dir, label_dir, output_dir, train_ratio=0.7, valid_ratio=0.15, test_ratio=0.15):# 获取所有图像文件的文件名(不包括文件扩展名)image_filenames = [os.path.splitext(f)[0] for f in os.listdir(image_dir)]# 随机打乱文件名列表random.shuffle(image_filenames)# 计算训练集、验证集和测试集的数量total_count = len(image_filenames)train_count = int(total_count * train_ratio)valid_count = int(total_count * valid_ratio)test_count = total_count - train_count - valid_count# 定义输出文件夹路径train_image_dir = os.path.join(output_dir, 'train', 'images')train_label_dir = os.path.join(output_dir, 'train', 'labels')valid_image_dir = os.path.join(output_dir, 'valid', 'images')valid_label_dir = os.path.join(output_dir, 'valid', 'labels')test_image_dir = os.path.join(output_dir, 'test', 'images')test_label_dir = os.path.join(output_dir, 'test', 'labels')# 复制图像和标签文件到对应的文件夹train_missing_files = copy_files(image_dir, train_image_dir, image_filenames[:train_count], '.jpg')train_missing_files += copy_files(label_dir, train_label_dir, image_filenames[:train_count], '.txt')valid_missing_files = copy_files(image_dir, valid_image_dir, image_filenames[train_count:train_count + valid_count], '.jpg')valid_missing_files += copy_files(label_dir, valid_label_dir, image_filenames[train_count:train_count + valid_count], '.txt')test_missing_files = copy_files(image_dir, test_image_dir, image_filenames[train_count + valid_count:], '.jpg')test_missing_files += copy_files(label_dir, test_label_dir, image_filenames[train_count + valid_count:], '.txt')# Print the count of each datasetprint(f"Train dataset count: {train_count}, Missing files: {train_missing_files}")print(f"Validation dataset count: {valid_count}, Missing files: {valid_missing_files}")print(f"Test dataset count: {test_count}, Missing files: {test_missing_files}")# 使用例子
image_dir = 'datasets/coco128/images/train2017'
label_dir = 'datasets/coco128/labels/train2017'
output_dir = './my_dataset'split_and_copy_dataset(image_dir, label_dir, output_dir)

运行完脚本后我们的数据集就会划分成这个格式了,现在数据准备工作就彻底完成了,接下来我们开始着手训练模型。
在这里插入图片描述

4.配置训练环境

4.1获取代码

git clone https://github.com/ultralytics/ultralytics

针对网络不好的同学,我这里上传了一份:

链接: https://pan.baidu.com/s/1crFGhcmvik-sZJfXY3ixkw?pwd=xma5 提取码: xma5 

4.2安装环境

cd ultralytics
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

5.训练模型

5.1新建一个数据集yaml文件

这个是我新建的,里面写绝对路径 (主要是怕出错):

# moncake
train: D:\Pycharm_Projects\ultralytics\ultralytics\datasets\mooncake\train  # train images (relative to 'path') 128 images
val: D:\Pycharm_Projects\ultralytics\ultralytics\datasets\mooncake\valid # val images (relative to 'path') 128 images
test: D:\Pycharm_Projects\ultralytics\ultralytics\datasets\mooncake\test # test images (optional)# Classes
names:0: MoonCake

这个是自带的,里面写相对路径,和我们的写法不同,但是都可以使用,据我所只还有很多种数据集读取方式:

# coco128
path: ../datasets/coco128  # dataset root dir
train: images/train2017  # train images (relative to 'path') 128 images
val: images/train2017  # val images (relative to 'path') 128 images
test:  # test images (optional)# Classes
names:0: person1: bicycle2: car''''''79: toothbrush

在这里插入图片描述
相应的数据集位置就在这里,我们可以和 coco128 对比一下,这两种划分格式都可以的,这里一定要注意路径问题!

5.2预测模型

python 指令推理方式

from ultralytics import YOLO# Load a model
model = YOLO('yolov8n.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom model# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg')  # predict on an image

终端中直接键入以下指令就可以实现对图进行推理了,推理后如果不指定文件夹,就会默认保存到 runs/detect/predict下。

yolo task=detect mode=predict model=yolov8n.pt source=data/images device=0 save=True

在这里插入图片描述
在这里插入图片描述
就这张图来说,v8 确实比v5 牛左上角的标志都检测出来了,但是阳台上的自行车还是没检测出来。
YOLOv8 关于模型的各种参数其实都写到了一起,在ultralytics/yolo/cfg/default.yaml,这些指令我们就可以实现各种我们所需的操作。
在这里插入图片描述
在这里插入图片描述

5.3训练模型

模型训练阶段的原理和预测步骤一致,都可以直接通过命令行搞定,关于这部分参数依然在ultralytics/yolo/cfg/default,yanl中,但我们要训练自己的数据集时记得在 data 参数后指定我们自己的数据集 yamL 文件路径哦。
以下提供两种指令,分别对应了不同的需求。(这里有一点值得注意,我直接写 data=MoonCake.yal 是报错的! 这个涉及到一个坑的问题,没遇到的同学暂且忽略)
python指令训练方式

from ultralytics import YOLO# Load a model
model = YOLO('yolov8n.yaml')  # build a new model from YAML
model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights# Train the model
model.train(data='coco128.yaml', epochs=100, imgsz=640)

在这里插入图片描述
在这里插入图片描述
在训练过程中(训练结束后也可以看》我们可以通过 Tensorboard实时查看模型的训练进度,只需要在终端中键入如下的指令,这个在我们每次训练时候都会有提示:

tensorboard --logdir runs\detect\train2

在这里插入图片描述
训练结束后我们可以查看得到的一些指标数据:
在这里插入图片描述
在这里插入图片描述
我这里展示一张 PR 曲线图。

6.验证模型

验证模型同样是简单命令行即可实现,如果没有修改中的 ultralytics/yolo/cfg/default,yamL 默认值,同样别忘了指定自己数据集的 yaml ,即 data=ultralytics/datasets/MoonCake.yaml
python 指令验证方式

from ultralytics import YOLO# Load a model
model = YOLO('yolov8n.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom model# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map    # map50-95
metrics.box.map50  # map50
metrics.box.map75  # map75
metrics.box.maps   # a list contains map50-95 of each category

在这里插入图片描述
同样的,我们验证完后依然可以得到一个文件夹:
在这里插入图片描述
我们可以看一下检测效果:
在这里插入图片描述

在这里插入图片描述

7.导出模型

python指令方式导出

from ultralytics import YOLO# Load a model
model = YOLO('yolov8n.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom trained# Export the model
model.export(format='onnx')

导出有关的具体参数如下:

在这里插入图片描述

注: TorchScript是PVTorch的模型导出工具。INT8(8位整数量化)是一种量化方法,可将神经网络参数表示为8位整数,以降低存储和计算
成本。ONNX(Open NeuralNetwork Exchange) 是一种跨平台、开放式的机器学习框架。TensorRT是一种用于加速深度学习推理的高性能
引擎。CoreML是苹果公司推出的机器学习框架。Keras是一种流行的深度学习框架。

至此使用 YOLOv8 训练自己的目标检测数据集六大步!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/795839.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

了解IP地址的基本概念和修改步骤

在数字化时代&#xff0c;IP地址作为网络设备的唯一标识&#xff0c;其重要性不言而喻。无论是为了提升网络性能&#xff0c;还是出于隐私保护的需求&#xff0c;修改IP地址都是网络使用者可能遇到的操作。虎观代理将详细介绍如何修改IP地址&#xff0c;并探讨在修改过程中需要…

python+flask+django文献文件资料搜索系统

后端&#xff1a;python 前端&#xff1a;vue.jselementui 框架&#xff1a;django/flask Python版本&#xff1a;python3.7 数据库&#xff1a;mysql 数据库工具&#xff1a;Navicat 开发软件&#xff1a;PyCharm 本系统在设计过程中&#xff0c;很好地发挥了该开发方式的优…

例47:键盘事件演示

建立一个EXE工程&#xff0c;在默认窗体上放一个Image框和一一个text框。在text的按键事件中输入代码&#xff1a; Function Form1_Text1_WM_KeyDown(hWndForm As hWnd, hWndControl As hWnd,nVirtKey As Long, lKeyData As Long) As LongIf nVirtKey VK_SPACE ThenImage1.Pi…

Linux:IO多路转接之select

文章目录 selecttimeval结构体fd_set 优缺点分析完整代码 本节要介绍的主题是多路转接式IO select 先说结论&#xff0c;这个select是做什么的呢&#xff1f; select是负责在Linux系统中&#xff0c;让一个人可以有多个鱼竿&#xff0c;可以不停的进行轮询&#xff0c;只要有…

Trace链异常检测汇总

微服务应用与单块应用完全不同&#xff0c;一个微服务系统少则有几十个微服务组成&#xff0c;多则可能有上百个服务。比如BAT级别的互联网公司&#xff0c;一般都超过上百个服务&#xff0c;服务之间的依赖关系错综复杂&#xff0c;如果没有有效的监控手段&#xff0c;那么出现…

[计算机知识] 各种小问题思考

哈希算法以及哈希冲突 哈希算法&#xff1a;将任何长度的输入通过散列函数转换成固定长度的字符串 哈希冲突&#xff1a;不同的输入经过哈希函数处理后得到相同的哈希值 因为哈希函数的输出域是有限的 解决哈希冲突&#xff1a; 1. 开放寻址&#xff1a;产生哈希冲突后&…

Vue - 1( 13000 字 Vue 入门级教程)

一&#xff1a;Vue 导语 1.1 什么是 Vue Vue.js&#xff08;通常称为Vue&#xff09;是一款流行的开源JavaScript框架&#xff0c;用于构建用户界面。Vue由尤雨溪在2014年开发&#xff0c;是一个轻量级、灵活的框架&#xff0c;被广泛应用于构建单页面应用&#xff08;SPA&am…

创建和启动线程

概述 Java语言的JVM允许程序运行多个线程&#xff0c;使用java.lang.Thread类代表线程&#xff0c;所有的线程对象都必须是Thread类或其子类的实例。 Thread类的特性 每个线程都是通过某个特定Thread对象的run()方法来完成操作的&#xff0c;因此把run()方法体称为线程执行体。…

使用神经网络-遗传算法优化神经网络-风电预测故障(BP,GABP,matlab)

本项目是故障预测&#xff0c;不是时序预测&#xff0c;本质还是分类问题 1 数据集介绍 特征文件&#xff1a; 标签文件&#xff1a;共计4个标签&#xff0c;其中大多数都是正常的&#xff0c;其他是3个不正常的类别 2 使用BP网络 2.1 读取数据&#xff0c;然后选择几个…

【深度学习】图像自然语言描述生成

案例 6&#xff1a;图像自然语言描述生成&#xff08;让计算机“看图说话”&#xff09; 相关知识点&#xff1a;RNN、Attention 机制、图像和文本数据的处理 1 任务目标 1.1 任务和数据简介 ​ 本次案例将使用深度学习技术来完成图像自然语言描述生成任务&#xff0c;输入…

MySQL复制拓扑2

文章目录 主要内容一.配置基本复制结构1.分别在三台主机上停止mysqld服务&#xff0c;并对状态进行确认&#xff1a;代码如下&#xff08;示例&#xff09;: 2.对三个MySQL服务器的配置文件分别进行编辑&#xff0c;在[mysqld] 选项组中添加以下红色条目&#xff1a;3.在数据目…

深入理解Java异常处理机制(day20)

异常处理 异常处理是程序运行过程产生的异常情况进行恰当的处理技术 在计算机编程里面&#xff0c;异常的情况比所我们所想的异常情况还要多。 Java里面有两种异常处理方式&#xff1b; 1.利用trycatchfinaly语句处理异常&#xff0c;优点是分开了处理异常代码和程序正常代码…

深入浅出 -- 系统架构之负载均衡Nginx反向代理

一、Nginx反向代理-负载均衡 首先通过SpringBootFreemarker快速搭建一个WEB项目&#xff1a;springboot-web-nginx&#xff0c;然后在该项目中&#xff0c;创建一个IndexNginxController.java文件&#xff0c;逻辑如下&#xff1a; Controller public class IndexNginxControl…

【放假第3天】幻兽帕鲁 雾锁王国 我的世界 游戏云服务器选购指南 附最新价格对比表 新手、小白秒懂

更新日期&#xff1a;4月6日&#xff08;半年档 价格回调&#xff0c;京东云采购季持续进行&#xff09; 本文纯原创&#xff0c;侵权必究 【云服务器推荐】价格对比&#xff01;阿里云 京东云 腾讯云 选购指南视频截图 《最新对比表》已更新在文章头部—腾讯云文档&#xf…

前端三剑客 —— CSS (第四节)

目录 内容回顾&#xff1a; 1.常见样式 2.特殊样式 特殊样式 过滤效果 动画效果 动画案例&#xff1a; 渐变效果 其他效果&#xff1a; 多列效果 字体图标&#xff08;icon&#xff09; 内容回顾&#xff1a; 1.常见样式 text-shadow x轴 y轴 阴影的模糊程度 阴影的…

【话题:工作生活】2022年工作总结--疫情下的上海,疫情中的我。

现在是阳历2023年11月27日星期一&#xff0c;我再次开始撰写自己的年终工作总结。希望再过1、2个月&#xff0c;这份年终总结能够出炉&#xff0c;与大家相遇。 给自己定个小目标&#xff0c;年终的工作生活总结坚持写10年。我2017年毕业&#xff0c;之后就开始写每年的年终总结…

软考117-上午题-【计算机网络】-杂题+小结

一、杂题 真题1&#xff1a; 真题2&#xff1a; 真题3&#xff1a; 真题4&#xff1a; 真题5&#xff1a; 真题6&#xff1a; 真题7&#xff1a; 真题8&#xff1a; 真题9&#xff1a; 真题10&#xff1a; 真题11&#xff1a; 真题12&#xff1a; 真题13&#xff1a; 真题14&a…

c# wpf LiveCharts MVVM绑定 简单试验

1.概要 c# wpf LiveCharts MVVM绑定 简单试验 2.代码 <Window x:Class"WpfApp3.Window3"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://s…

Unity性能优化篇(十四) 其他优化细节以及UPR优化分析器

代码优化&#xff1a; 1. 使用AssetBundle作为资源加载方案。 而且经常一起使用的资源可以打在同一个AssetBundle包中。尽量避免同一个资源被打包进多个AB包中。压缩方式尽量使用LZ4&#xff0c;少用或不要用LZMA的压缩方式。如果确定后续开发不会升级Unity版本&#xff0c;则可…

MySql并发事务问题

事务 事务概念&#xff1a; 事务是一组操作的集合&#xff0c;它是一个不可分割的工作单位&#xff0c;事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求&#xff0c;即这些操作要么同时成功&#xff0c;要么同时失败。 事务的特性&#xff1a;ACID&#xff1a; 小…