70 爬楼梯(进阶)
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
输入描述
输入共一行,包含两个正整数,分别表示n, m
输出描述
输出一个整数,表示爬到楼顶的方法数。
思路:完全背包问题,求的是排列数,套模版
代码实现:
#include <iostream>
#include <vector>
using namespace std;
int main() {int n, m;while (cin >> n >> m) {vector<int> dp(n + 1, 0);dp[0] = 1;for (int i = 1; i <= n; i++) { // 遍历背包for (int j = 1; j <= m; j++) { // 遍历物品if (i - j >= 0) dp[i] += dp[i - j];}}cout << dp[n] << endl;}
}
- 时间复杂度: O(n * m)
- 空间复杂度: O(n)
详细解析:
代码实现文章
322 零钱兑换(medium)
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
思路:完全背包问题,理解为排列/组合问题均可
代码实现1:
// 版本一
class Solution {
public:int coinChange(vector<int>& coins, int amount) {vector<int> dp(amount + 1, INT_MAX);dp[0] = 0;for (int i = 0; i < coins.size(); i++) { // 遍历物品for (int j = coins[i]; j <= amount; j++) { // 遍历背包if (dp[j - coins[i]] != INT_MAX) { // 如果dp[j - coins[i]]是初始值则跳过dp[j] = min(dp[j - coins[i]] + 1, dp[j]);}}}if (dp[amount] == INT_MAX) return -1;return dp[amount];}
};
- 时间复杂度: O(n * amount),其中 n 为 coins 的长度
- 空间复杂度: O(amount)
代码实现2:
// 版本二
class Solution {
public:int coinChange(vector<int>& coins, int amount) {vector<int> dp(amount + 1, INT_MAX);dp[0] = 0;for (int i = 1; i <= amount; i++) { // 遍历背包for (int j = 0; j < coins.size(); j++) { // 遍历物品if (i - coins[j] >= 0 && dp[i - coins[j]] != INT_MAX ) {dp[i] = min(dp[i - coins[j]] + 1, dp[i]);}}}if (dp[amount] == INT_MAX) return -1;return dp[amount];}
};
- 时间复杂度: O(n * amount),其中 n 为 coins 的长度
- 空间复杂度: O(amount)
详细解析:
思路视频
代码实现文章
279 完全平方数(medium)
给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
思路:完全背包问题,理解为排列/组合问题均可
代码实现1:
// 版本一
class Solution {
public:int numSquares(int n) {vector<int> dp(n + 1, INT_MAX);dp[0] = 0;for (int i = 0; i <= n; i++) { // 遍历背包for (int j = 1; j * j <= i; j++) { // 遍历物品dp[i] = min(dp[i - j * j] + 1, dp[i]);}}return dp[n];}
};
- 时间复杂度: O(n * √n)
- 空间复杂度: O(n)
代码实现2:
// 版本二
class Solution {
public:int numSquares(int n) {vector<int> dp(n + 1, INT_MAX);dp[0] = 0;for (int i = 1; i * i <= n; i++) { // 遍历物品for (int j = i * i; j <= n; j++) { // 遍历背包dp[j] = min(dp[j - i * i] + 1, dp[j]);}}return dp[n];}
};
- 时间复杂度: O(n * √n)
- 空间复杂度: O(n)
详细解析:
思路视频
代码实现文章