论文笔记:Large Language Models as Analogical Reasoners

iclr 2024 reviewer打分5558

1 intro

  • 基于CoT prompt的大模型能够更好地解决复杂推理问题
    • 然而传统CoT需要提供相关的例子作为指导,这就增加了人工标注的成本
    • ——>Zero-shot CoT避免了人工标注来引导推理
      • 但是对于一些复杂的任务难以完成推理,例如code generation
  • ——>论文提出一种“归纳学习”的提示方法
    • 首先设计prompt让大模型生成出与当前问题比较相关的问题和答案,以辅助问答提出的问题

2 preliminary

  • 给定一个问题x

    • 首先通过prompt将问题映射到文本输入ϕ ( x ) 

      • zero-shotϕ ( x ) 就是x
        zero-shot CoTϕ ( x ) 是[x] think step by step
        few-shot CoT

        ϕ ( x ) 是[x]和一些带label的例子 \{(x_i,r_i,a_i)\})_{i=1}^K,即

        [x1][r1][a1].....[xK][rK][aK][x]

    • 任务目标是调用LLM解决这个问题【生成目标答案y】

      • 生成的目标答案可以包含reasoning path r【推理过程】和答案a 

3 方法

3.1 Self-Generated Exemplars

  • 让大模型从在训练阶段掌握的problem-solving knowledge中生成出相关的问题和解决方法

3.1.1 prompt举例

3.1.2 大模型给的答案

大模型先生成出3个相关的且互不相同的problem,并给出相应的解决方案,然后再对目标问题进行解决。

3.1.3 self-generated instruction的三个核心部分

  • 明确地让大模型生成相关且不同的样例。
    • 因为大模型会偏向于重复地生成一些经典的问题,导致误导
  • single-pass VS independent exemplar generation
    • 所谓single-pass,就是直接prompt,让模型生成3个样例
    • independent exemplar generation:让模型生成若干样例,然后采样3个样例,之后再重新设计prompt让大模型进行生成
    • ——>通过实验,发现single-pass效果最好
  • 生成的样例数量:3~5最佳

3.2 Self-generated Knowledge + Exemplars

  • 对于像代码生成等复杂的任务,3.1这样的案例生成方法不一定能过让模型很好地解决此类问题
    • ——>论文提出一种high-level generation方法。通过设计如下指令来实现:
  • 【让模型先思考选择什么algorithm,以及algorithm对应的tutorial】

有点类似于:论文笔记:Take a Step Back:Evoking Reasoning via Abstraction in Large Language Models-CSDN博客的后退一步?

3.2.1 prompt 案例

3.2.2 大模型给的答案

4 实验

4.1 实验任务

  • 数学问题:GSM8K、MATH等;
  • 代码生成:动态规划、图算法等复杂的编程题

4.2 效果比较

4.2.1 数学问题

4.2.2 代码生成

4.3 few-shot example 数量的异同

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/794973.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Type-c转USBA3.0芯片 USBA3.0转Type-c芯片(USB3.1GEN2 多路切换Switch芯片) VL162

VL162具有CC功能的USB Type-C数据开关USB 3.1 Gen2 (10Gbps) VL162 带CC功能的USB Type-C数据开关 支持最高10Gbps 2差分通道,2:1 MUX/DeMUX 兼容10Gbps USB3.1 Gen2 低功耗,6mW在设备模式下有效 高直流共模电压,支持2.0V 28针QFN 3.5 x 4.5m…

人工智能数据分析Python常用库 04 matplotlib库

文章目录 一、matplotlib库的作用与环境配置1、环境配置示例2、改变绘图风格3、保存图片 二、绘制二维图形1、折线图(1)示例(2)调整线条颜色:(3)调整线条风格(4)调整线宽…

【C语言】_文件内容操作:随机读写

目录 1. fseek 1.1 随机读文件 1.2 随机写文件 2. ftell 3. rewind 当以读方式打开一个存在且存有内容的文件时,文件指针会默认指向第一个元素。以在test4.txt文件中存储abcdef为例: int main() {//打开文件FILE* pf fopen("E:\\C_文件操作…

关系型数据库与非关系型数据库、Redis数据库

相比于其他的内存/缓存数据库,redis可以方便的实现持久化的功能(保存至磁盘中) 一、关系数据库与非关系型数据库 1.1 关系型数据库 一个结构化的数据库,创建在关系模型基础上一般面向于记录 SQL语句 (标准数据查询语言) 就是一种…

LNMP环境:揭秘负载均衡与高可用性设计

lb1: 192.168.8.5 lb2: 192.168.8.6 web1:192.168.8.7 web2:192.168.8.8 php-fpm: 192.168.8.9 mysql: 192.168.8.10 nfs:192.168.8.11 分别插入镜像 8.5-8.8 分别安装nginx,并设置启动 8.9 安装php 8.10 安装mysql 先配置一台web服务器然后同步 设置网站根目录 cp -…

【00】【solidity最新教程】-简介

Solidity 是一门面向合约的、为实现智能合约而创建的高级编程语言。这门语言受到了 C,Python 和 Javascript 语言的影响,设计的目的是能在以太坊虚拟机(EVM)上运行。 Solidity 是静态类型语言,支持继承、库和复杂的用…

java -网络编程socket-聊天室-02

完整版代码 java -聊天室的代码: 用于存放聊天室的项目的代码和思路导图https://gitee.com/to-uphold-justice-for-others/java---code-for-chat-rooms.git 先引入线程的正统解释 线程(Thread)是程序执行流的最小单元。线程是操作系统分配CPU时间片的基…

【数据分析面试】10. 计算平均通勤时间(SQL:timestampdiff() 和datediff()区别)

题目 假设你在Uber工作。rides表包含了关于Uber用户在美国各地的行程信息。 编写一个查询,以获取纽约(NY)每位通勤者的平均通勤时间(以分钟为单位),以及纽约所有通勤者的平均通勤时间(以分钟为…

vue广告悬浮框,页面来回移动,鼠标放上停止,离开移动

1.dom <div class"popup-dialog" id"popupDialog" mouseover"onMmouseover" mouseout"onMouseout"><p>vue广告悬浮</p></div>2.js mounted() {this.initPopup();},beforeDestory() {if (this.times) {clearIn…

鸡尾酒排序解读

在数据处理的海洋中&#xff0c;排序算法无疑是引领我们探索数据规律的灯塔。今天&#xff0c;我们要探讨的是一种有趣且独特的排序算法——鸡尾酒排序。鸡尾酒排序&#xff0c;也被称为定向冒泡排序、双冒泡排序或搅拌排序&#xff0c;是冒泡排序的一种变体&#xff0c;它通过…

了解强化学习算法 PPO

&#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 介绍&#xff1a; PPO 算法&#xff0c;即 Proximal Policy Optimization&#xff08;近端策略优化&#xff09;&#xff0c;是一种强化学习算法。它的主要目的是改进策略梯度方法&#xff0c;使得训练…

flink on yarn

前言 Apache Flink&#xff0c;作为大数据处理领域的璀璨明星&#xff0c;以其独特的流处理和批处理一体化模型&#xff0c;成为众多企业和开发者的首选。它不仅能够在处理无界数据流时展现出卓越的实时性能&#xff0c;还能在有界数据批处理上达到高效稳定的效果。本文将简要…

高校心理咨询预约系统的设计与实现(论文+源码)_kaic

摘 要 随着社会的发展&#xff0c;计算机的优势和普及使得高校心理咨询预约系统的开发成为必需。高校心理咨询预约系统主要是借助计算机&#xff0c;通过对信息进行管理。减少管理员的工作&#xff0c;同时也方便广大用户对个人所需信息的及时查询以及管理&#xff0c;其次是大…

苍穹外卖——项目搭建

一、项目介绍以及环境搭建 1.苍穹外卖项目介绍 1.1项目介绍 本项目&#xff08;苍穹外卖&#xff09;是专门为餐饮企业&#xff08;餐厅、饭店&#xff09;定制的一款软件产品&#xff0c;包括 系统管理后台 和 小程序端应用 两部分。其中系统管理后台主要提供给餐饮企业内部员…

【洛谷 P8655】[蓝桥杯 2017 国 B] 发现环 题解(邻接表+并查集+路径压缩)

[蓝桥杯 2017 国 B] 发现环 题目描述 小明的实验室有 N N N 台电脑&#xff0c;编号 1 ∼ N 1 \sim N 1∼N。原本这 N N N 台电脑之间有 N − 1 N-1 N−1 条数据链接相连&#xff0c;恰好构成一个树形网络。在树形网络上&#xff0c;任意两台电脑之间有唯一的路径相连。 …

ARM架构学习笔记2-汇编

RISC是精简指令集计算机&#xff08;RISC:Reduced Instruction Set Computing&#xff09; ARM汇编概述 一开始&#xff0c;ARM公司发布两类指令集&#xff1a; ① ARM指令集&#xff0c;这是32位的&#xff0c;每条指令占据32位&#xff0c;高效&#xff0c;但是太占空间 2…

怎么让html打开网页自动跳转(多个链接)?

&#x1f3c6;本文收录于「Bug调优」专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收藏&&…

#SOP#-如何使用AI辅助论文创作

#SOP#-如何使用AI辅助论文创作 ——2024.4.6 “在使用工具的时候&#xff0c;要做工具的主人” 最终交付物&#xff1a; 一份可执行的AI辅助创作论文的指导手册 交付物质量要求&#xff1a; 不为任何AI大模型付费&#xff01;不为任何降重网站付费&#xff01;通过知网检查论…

语义分割——自动驾驶鱼眼数据集

一、重要性及意义 环境感知&#xff1a;语义分割技术能够精确识别道路、车辆、行人、障碍物、交通标志和信号等各种交通场景元素。这为自动驾驶系统提供了丰富的环境信息&#xff0c;有助于车辆准确理解周围环境的结构和动态变化。决策规划&#xff1a;基于语义分割的结果&…

2024 最新版 Proteus 8.17 安装汉化教程

前言 大家好&#xff0c;我是梁国庆。 今天给大家带来的是目前 Proteus 的最新版本——Proteus 8.17。 时间&#xff1a;2024年4月4日 获取 Proteus 安装包 我已将本篇所使用的安装包打包上传至百度云&#xff0c;扫描下方二维码关注「main工作室」&#xff0c;后台回复【…