【本长内容】
1. 掌握树的基本概念
2. 掌握二叉树概念及特性
3. 掌握二叉树的基本操作
4. 完成二叉树相关的面试题练习
1. 树形结构
1.1 概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
1.有一个特殊的结点,称为根结点,根结点没有前驱结点
2.除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、......、Tm,其中每一个集合Ti (1 <= i <=m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继.
3.树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
1.2 概念
结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6
树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6
叶子结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等节点为叶结点
双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
根结点:一棵树中,没有双亲结点的结点;如上图:A
结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推
树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
树的以下概念只需了解,在看书时只要知道是什么意思即可:
非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G...等节点为分支结点
兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
森林:由m(m>=0)棵互不相交的树组成的集合称为森林
1.3 树的应用
2. 二叉树
2.1 概念
一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
从上图可以看出:
1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:
2.2 两种特殊的二叉树
1. 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
2. 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
2.3 二叉树的性质
1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有 (i>0)个结点
2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是 (k>=0)
3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
4. 具有n个结点的完全二叉树的深度k为 上取整
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
若2i+1<n,左孩子序号:2i+1,否则无左孩子
若2i+2<n,右孩子序号:2i+2,否则无右孩子
2.4 二叉树的存储
二叉树的存储结构分为:顺序存储和类似于链表的链式存储。
顺序存储在下节介绍。
二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:
// 孩子表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
Node parent; // 当前节点的根节点
}
孩子双亲表示法后序在平衡树位置介绍,本文采用孩子表示法来构建二叉树。
2.5 二叉树的基本操作
2.5.1 前置说明
在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结构掌握还不够深入,为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。
public class BinaryTree{public static class BTNode{BTNode left;BTNode right;int value;BTNode(int value){this.value = value;}}private BTNode root;public void createBinaryTree(){BTNode node1 = new BTNode(1);BTNode node1 = new BTNode(2);BTNode node1 = new BTNode(3);BTNode node1 = new BTNode(4);BTNode node1 = new BTNode(5);BTNode node1 = new BTNode(6);root = node1;node1.left = node2;node2.left = node3;node1.right = node4;node4.left = node5;node5.right = node6;}
}
注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。
再看二叉树基本操作前,再回顾下二叉树的概念,二叉树是:
1. 空树
2. 非空:根节点,根节点的左子树、根节点的右子树组成的
从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的.
2.5.2 二叉树的遍历
1. 前中后序遍历
学习二叉树结构,最简单的方式就是遍历。所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结
点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加
1)。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。
在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果N代表根节点,L代表根节点的左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:
NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树。
LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。
LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点。
public void preOrder(TreeNode root){if(root==null){return;}System.out.println(root);preOrder(root.left);preOrder(root.right);}public void inOrder(TreeNode root){if(root==null){return;}inOrder(root.left);System.out.println(root);inOrder(root.right);}public void postOrder(TreeNode root){if(root==null){return;}postOrder(root.left);postOrder(root.right);System.out.println(root);}
2. 层序遍历
层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
class Solution {public List<List<Integer>> levelOrderBottom(TreeNode root) {List<List<Integer>> lists = new LinkedList<>(); if(root==null){return lists;}Queue<TreeNode> queue = new LinkedList<TreeNode>();queue.offer(root);while(!queue.isEmpty()){List<Integer> list = new ArrayList<Integer>();int size =queue.size();for(int i =0;i<size; i++){TreeNode node = queue.poll();list.add(node.val);TreeNode left = node.left;TreeNode right = node.right;if (left != null) {queue.offer(left);}if (right != null) {queue.offer(right);}}lists.add(list);list.add(list);}return lists;}
2.5.3 二叉树的基本操作
获取树中节点的个数
void size(TreeNode root) {if(root==null){return;}nodeSize++;size(root.left);size(root.right); }//遍历方法int size(TreeNode root) {if(root==null){return 0;}return size2(root.left) + size2(root.right)+1; }//子问题方法获取叶子节点的个数
void getLeafNodeCount1(TreeNode root) {if(root.left==null && root.right == null){leafSize++;return;}getLeafNodeCount1(root.left);getLeafNodeCount1(root.right); }//遍历思路int getLeafNodeCount2(TreeNode root) {if(root.left == null && root.right == null){return 1;}return getLeafNodeCount2(root.left) + getLeafNodeCount2(root.right); }//子问题思路获取第K层节点的个数int getKLevelNodeCount(TreeNode root, int k) {if(root==null){return 0;}if(k==1){return 1;}return getKLevelNodeCount(root.left,k-1) + getKLevelNodeCount(root.right,k-1); }//获取二叉树的高度int getHeight(TreeNode root) {if(root==null){return 0;}int lefttree = getHeight(root.left);int righttree = getHeight(root.right);return righttree>lefttree ? righttree +1:lefttree+1; }检测值为value的元素是否存在TreeNode find(TreeNode root, char val) { if(root==null){return null; } if(root.val==val){return root; } TreeNode ret1 = find(root.left,val); if(ret1 != null){return ret1; } TreeNode ret2 = find(root.right.right,val); if(ret2 != null){return ret2; } return null;}判断一棵树是不是完全二叉树boolean isCompleteTree(TreeNode root) {Queue<TreeNode> queue = new LinkedList<>();queue.add(root);while(!queue.isEmpty()){TreeNode ret =queue.poll();if(ret != null){queue.offer(ret.left);queue.offer(ret.right);}else {break;}}while(!queue.isEmpty()){if(queue.poll() != null){return false;}}return true; }
二叉树的概念比较简单,但是由于是递归,所以代码的难度和理解都比较难,需要我们花时间去理解和掌握.
大家看完博客以后可以去多写习题来巩固.