数据结构:详解【树和二叉树】

1. 树的概念及结构(了解)

1.1 树的概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

1.2 树的结构
在这里插入图片描述

1.3 树与非树

在这里插入图片描述

1.4 树在实际中的运用(表示文件系统的目录树结构)

在这里插入图片描述

2. 与树的结构相关的概念

在这里插入图片描述
在这里插入图片描述

  • 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6。
  • 叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点。
  • 非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点。
  • 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点。
  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点。
  • 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点。
  • 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6。
  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推
  • 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4。
  • 森林:由m(m>0)棵互不相交的多颗树的集合称为森林;(数据结构中的学习并查集本质就是一个森林)。

3. 二叉树的概念及结构

2.1 概念
一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树右子树的二叉树组成。

2.2 二叉树的特点:
1.每个结点最多有两棵子树,即二叉树不存在度大于2的结点
2.二叉树的子树有左右之分,其子树的次序不能颠倒

2.3 两种特殊的二叉树
(1)满二叉树:
一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2k -1 ,则它就是满二叉树。
(2)完全二叉树:
对于深度为K的,有n个结点的二叉树,如果满足前K-1层都是满的,最后一层不满,但最后一层从左到右都是连续的。则这个二叉树就是完全二叉树。
在这里插入图片描述

(3)对这两种二叉树的有关数据的推导

在这里插入图片描述

4. 二叉树的性质

  • 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)个结点
  • 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h- 1
  • 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有n0=n2+1
  • 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h = logN(以2为底)。

5. 二叉树的存储

5.1 顺序存储 :
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树

在这里插入图片描述

5.2 链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/c24bc02ae45b457aba2121bb692246bc.png

6. 二叉树的前,中,后序遍历

要实现前,中,后序遍历,我们需要再来理解二叉树的结构。把任一一棵二叉树分为三部分:根节点,左子树,右子树。

我们这里先拿一棵简单的二叉树举例:
在这里插入图片描述

6.1 二叉树的前序(先根)遍历:
根,左子树,右子树
对应上图为:A B D NULL NULL E NULL NULL C NULL NULL。

6.2 二叉树的中序(中根)遍历:
左子树,根,右子树
对应上图为:NULL D NULL B NULL E NULL A NULL C NULL。

6.3 二叉树的后序(后根)遍历:
左子树,右子树,根
对应上图为:NULL NULL D NULL NULL E B NULL NULL C A。

7. 有关二叉树的常用功能的实现

7.1 三序(深度优先)遍历的代码实现

这里我们需要用到分治算法: 分而治之,把大问题分成类似的子问题,子问题再分成子问题……直到子问题不可再分割。实际上就是递归思想

7.2 根据上图代码实现如下:

#define _CRT_SECURE_NO_WARNINGS #include <stdio.h>
#include <stdlib.h>typedef char BTDataType;//定义二叉树的结构
typedef struct BinaryTreeNode
{BTDataType data;//存放的数据struct BinaryTreeNode* left;//左子树struct BinaryTreeNode* right;//右子树
}BTNode;//前序遍历
void PrevOrder(BTNode* root)//根节点
{if (root == NULL){printf("NULL ");return;}printf("%c ", root->data);PrevOrder(root->left);PrevOrder(root->right);
}//中序遍历
void InOrder(BTNode* root)//根节点
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%c ", root->data);InOrder(root->right);}//后序遍历
void PostOrder(BTNode* root)//根节点
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%c ", root->data);}void TreeTest()
{//1.开辟节点和初始化BTNode* A = (BTNode*)malloc(sizeof(BTDataType));if (A == NULL){perror("malloc fail\n");return;}A->data = 'A';A->left = NULL;A->right = NULL;BTNode* B = (BTNode*)malloc(sizeof(BTDataType));if (B == NULL){perror("malloc fail\n");return;}B->data = 'B';B->left = NULL;B->right = NULL;BTNode* C = (BTNode*)malloc(sizeof(BTDataType));if (C == NULL){perror("malloc fail\n");return;}C->data = 'C';C->left = NULL;C->right = NULL;BTNode* D = (BTNode*)malloc(sizeof(BTDataType));if (D == NULL){perror("malloc fail\n");return;}D->data = 'D';D->left = NULL;D->right = NULL;BTNode* E = (BTNode*)malloc(sizeof(BTDataType));if (E == NULL){perror("malloc fail\n");return;}E->data = 'E';E->left = NULL;E->right = NULL;//2.链接各个节点A->left = B;A->right = C;B->left = D;B->right = E;//3.进行输出PrevOrder(A);printf("\n");InOrder(A);printf("\n");PostOrder(A);printf("\n");
}int main()
{TreeTest();return 0;
}

输出结果与我们分析的相同:

在这里插入图片描述

7.22 前序函数递归展开图:
![![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/e81c18c342764d33a3d4497b7a349d03.png](https://img-blog.csdnimg.cn/direct/5021db310f0b46a5a506abe96959af6d.png
中序和后续的递归展开图类似,读者自行分析。

7.3 计算一棵二叉树的总节点数

方法 1:遍历递归计数,定义局部变量size,传地址计数

代码实现如下:


void TreeSize(BTNode* root,int *psize)
{if (root == NULL){return;}else{(*psize)++;}TreeSize(root->left, psize);TreeSize(root->right, psize);}void TreeTest()
{......//续上上文的代码和图int Asize = 0;TreeSize(A, &Asize);printf("Asize:%d\n", Asize);int Bsize = 0;TreeSize(B, &Bsize);printf("Bsize:%d\n", Bsize);}

方法2:分治思想,递归

代码实现如下:

int TreeSize(BTNode* root)
{return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->right) + 1;
}void TreeTest()
{......//续上上文的代码和图printf("Asize:%d\n",TreeSize(A) );printf("Bsize:%d\n",TreeSize(B) );}

递归调用可抽象为:

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/3b543b40b6fe42139d9ea36bc59e7b5d.png

两种方法的输出结果均是:
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/c6d745f809604d9ba7e3a7d4f23cc8ca.png
7.4 计算一棵二叉树中叶子节点的个数
利用分治思想,后序遍历。

代码实现如下:

int TreeLeafSize(BTNode* root)
{if (root == NULL)return 0;//是叶节点if (root->left == NULL && root->right == NULL)return 1;//左边的叶节点+右边的叶节点return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}void TreeTest()
{......//续上上文的代码和图printf("LeafSize:%d\n",TreeLeafSize(A) );
}

输出结果是:
在这里插入图片描述

7.5 计算二叉树的最大深度

利用分治思想,后序遍历,当根节点为NULL时,返回0当根节点不为NULL时,分解子问题,先求左右子树的深度,该节点的深度 = 左右子树更大的那一个+1

代码实现如下:

int MaxDepth(BTNode* root)
{if (root == NULL)return 0 ;int leftdepth = MaxDepth(root->left);int rightdepth = MaxDepth(root->right);return leftdepth > rightdepth ? leftdepth + 1 : rightdepth + 1;}void TreeTest()
{......//续上上文的代码和图printf("MaxDepth:%d\n",MaxDepth(A) );
}

输出结果是:

在这里插入图片描述
7.6 销毁二叉树
销毁二叉树不能从根节点开始销毁,不然会找不到其他节点。要用后序遍历,先左节点,右节点,最后根节点。

代码实现如下:

void DestoryTree(BTNode* root)
{if (root == NULL)return;DestoryTree(root->left);DestoryTree(root->right);free(root);root = NULL;
}

8. 二叉树的层序(广度优先)遍历

8.1 什么是层序遍历

设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

在这里插入图片描述

8.2 层序遍历的代码实现

要实现二叉树的层序遍历,我们需要借助队列先进先出的特性。其核心思想是:上一层的一个节点出的时候带其下一层的子节点进

画图解释如下:
在这里插入图片描述

代码实现如下:

void LealOrder(BTNode* root)
{Queue q;QueueInit(&q);if (root)QueuePush(&q, root);while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);//取出队头QueuePop(&q);printf("%c ", front->data);if (front->left)//左不为空,入左节点QueuePush(&q, front->left);if (front->right)//右不为空,入右节点QueuePush(&q, front->right);}printf("\n");QueueDestory(&q);
}void TreeTest()
{......//续上上文的代码和图LealOrder(A);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/794204.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt --- 常用控件

目录 1. 前言 2. QWidget核心属性 2.1. enabled(控件是否可用) 2.2. geometry(尺寸) 2.2.1. windowframe的影响 2.3. windowTitle(窗口标题) 2.4. windowIcon(窗口图标) 2.5. 使用qrc文件资源管理 2.6. windowOpacity(半透明效果) 2.7. cursor(设置鼠标光标) 2.8. fo…

DAY15|二叉树的层序遍历,226.翻转二叉树,101.对称二叉树

文章目录 二叉树的层序遍历226.翻转二叉树&#xff08;层序遍历的衍生题&#xff09;101.对称二叉树 二叉树的层序遍历 文字讲解&#xff1a;二叉树的层序遍历 视频讲解&#xff1a;二叉树的层序遍历 状态&#xff1a;看了文字讲解后理解了&#xff0c;熟悉队列来遍历每层子节点…

哈佛大学商业评论 --- 第四篇:一家公司的AR经验

AR将全面融入公司发展战略&#xff01; AR将成为人类和机器之间的新接口&#xff01; AR将成为人类的关键技术之一&#xff01; 请将此文转发给您的老板&#xff01; --- 专题作者&#xff1a;Michael E.Porter和James E.Heppelmann 虽然物理世界是三维的&#xff0c;但大多…

LIN总线基础

文章目录 1 什么是LIN 总线&#xff1f;1.1 LIN总线的历史 2.LIN总线的特点2.1 LIN总线的电气特性 3. 应用4 LIN总线基本概念4.1 LIN报文帧结构4.1.1 主节点与从节点4.1.2 调度表4.1.3网络管理4.1.4 帧头结构4.1.4.1 电平4.1.4.2 同步间隔段&#xff08;间隔场&#xff09;4.1.…

算法学习18:动态规划

算法学习18&#xff1a;动态规划 文章目录 算法学习18&#xff1a;动态规划前言一、线性DP1.数字三角形&#xff1a;f[i][j] max(f[i - 1][j - 1] a[i][j], f[i - 1][j] a[i][j]);2.1最长上升子序列&#xff1a;f[i] max(f[i], f[j] 1);2.2 打印出最长子序列3.最长公共子序…

免版权素材库:在营销和宣传中的重要性与应用

title: 免版权素材库&#xff1a;在营销和宣传中的重要性与应用 date: 2024/4/5 18:21:43 updated: 2024/4/5 18:21:43 tags: 免版权素材库营销宣传高质量素材节省成本避免侵权创意启发数字营销 免版权素材库在宣传和营销中的重要性不言而喻。在当今数字化时代&#xff0c;图片…

基于Python的微博舆论分析,微博评论情感分析可视化系统,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

刷题之Leetcode34题(超级详细)

34. 在排序数组中查找元素的第一个和最后一个位置 力扣链接(opens new window)https://leetcode.cn/problems/find-first-and-last-position-of-element-in-sorted-array/ 给定一个按照升序排列的整数数组 nums&#xff0c;和一个目标值 target。找出给定目标值在数组中的开始…

c# wpf template ItemsPanel 简单试验

1.概要 2.代码 <Window x:Class"WpfApp2.Window9"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/expression/blend/…

【御控物联】JavaScript JSON结构转换(14):对象To数组——规则属性重组

文章目录 一、JSON结构转换是什么&#xff1f;二、术语解释三、案例之《JSON对象 To JSON数组》四、代码实现五、在线转换工具六、技术资料 一、JSON结构转换是什么&#xff1f; JSON结构转换指的是将一个JSON对象或JSON数组按照一定规则进行重组、筛选、映射或转换&#xff0…

中医肝胆笔记

目录 肝胆的经络足厥阴肝经足少阳胆经 疏肝健脾的药舒肝益脾颗粒&#xff1a;逍遥丸&#xff1a;疏肝颗粒 -> 疏肝理气的力度大-> 肝郁的程度深&#xff0c;逍遥丸没用的是时候用这个加味逍遥丸 -> 清热的力度最大->适用 肝郁火大&#xff0c;舌苔黄丹栀逍遥丸->…

LangChain Demo | 如何调用stackoverflow并结合ReAct回答代码相关问题

背景 楼主决定提升与LLM交互的质量&#xff0c;之前是直接prompt->answer的范式&#xff0c;现在我希望能用上ReAct策略和能够检索StackOverflow&#xff0c;让同一款LLM发挥出更大的作用。 难点 1. 怎样调用StackOverflow step1 pip install stackspi step 2 from la…

基于单片机的有害气体检查系统设计

**单片机设计介绍&#xff0c;基于单片机的有害气体检查系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的有害气体检查系统设计旨在实现对环境中各种有害气体的实时监测与报警&#xff0c;保障人员健康和环境…

如何使用NumPy处理数组翻转与变形

NumPy是Python中一个强大的库&#xff0c;主要用于处理大型多维数组和矩阵的数学运算。处理数组翻转与变形是NumPy的常用功能。 1.对多维数组翻转 n np.random.randint(0,100,size(5,6))n# 执行结果array([[ 9, 48, 20, 85, 19, 93], [ 1, 63, 20, 25, 19, 44], …

用 Wireshark 解码 H.264

H264&#xff0c;你不知道的小技巧-腾讯云开发者社区-腾讯云 这篇文章写的非常好 这里仅做几点补充 init.lua内容&#xff1a; -- Set enable_lua to false to disable Lua support. enable_lua trueif not enable_lua thenreturn end-- If false and Wireshark was start…

OpenCV入门例程:裁剪图片、模糊检测、黑屏检测

初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github&#xff1a;codetoys&#xff0c;所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的&#xff0c;可以在任何平台上使用。 本例程运行环境为CentOS7&…

JS详解-函数柯里化

简介&#xff1a; 柯里化&#xff08;Currying&#xff09;是一种关于函数的高阶技术。柯里化是一种函数的转换&#xff0c;它是指将一个函数从可调用的 f(a, b, c) 转换为可调用的 f(a)(b)(c)。柯里化不会调用函数。它只是对函数进行转换。 举个例子&#xff1a; 已最简单的…

图像处理入门 3(how to get the pixel pitch / 如何获得单个像素的尺寸)

在这里一节里面&#xff0c;将记录如何获得一个相机传感器中单个像素点的尺寸&#xff0c;为了实现不同相机照片之间的匹配。 如果我们知道了相机传感器的尺寸和分辨率的大小&#xff0c;自然就可以求出单个像素的大小。 在这里插入图片描述&#xff1a; 如何获得相机传感器的…

golang设计模式图解——模板方法模式

设计模式 GoF提出的设计模式有23个&#xff0c;包括&#xff1a; &#xff08;1&#xff09;创建型(Creational)模式&#xff1a;如何创建对象&#xff1b; &#xff08;2&#xff09;结构型(Structural )模式&#xff1a;如何实现类或对象的组合&#xff1b; &#xff08;3&a…