【深度学习】深度学习md笔记总结第3篇:TensorFlow介绍,学习目标【附代码文档】

深度学习笔记完整教程(附代码资料)主要内容讲述:深度学习课程,深度学习介绍要求,目标,学习目标,1.1.1 区别,学习目标,学习目标。TensorFlow介绍,2.4 张量学习目标,2.4.1 张量(Tensor),2.4.2 创建张量的指令,2.4.3 张量的变换,2.4.4 张量的数学运算,学习目标。TensorFlow介绍,1.2 神经网络基础学习目标。TensorFlow介绍,总结学习目标,1.3.1 神经网络,1.3.2 playground使用,学习目标,1.4.1 softmax回归,1.4.2 交叉熵损失。神经网络与tf.keras,1.3 Tensorflow实现神经网络学习目标,1.3.1 TensorFlow keras介绍,1.3.2 案例:实现多层神经网络进行时装分类。神经网络与tf.keras,1.4 深层神经网络学习目标。卷积神经网络,3.1 卷积神经网络(CNN)原理学习目标。卷积神经网络,3.1 卷积神经网络(CNN)原理学习目标。卷积神经网络,2.2案例:CIFAR100类别分类学习目标,2.2.1 CIFAR100数据集介绍,2.2.2 API 使用,2.2.3 步骤分析以及代码实现(缩减版LeNet5),学习目标。卷积神经网络,2.4 BN与神经网络调优学习目标。卷积神经网络,2.4 经典分类网络结构学习目标,2.4.6 案例:使用pre_trained模型进行VGG预测,2.4.7 总结。卷积神经网络,2.5 CNN网络实战技巧学习目标,3.1.1 案例:基于VGG对五种图片类别识别的迁移学习,3.1.2 数据增强的作用。卷积神经网络,总结学习目标,1.1.1 项目演示,1.1.2 项目结构,1.1.3 项目知识点,学习目标,1.2.1 安装。商品物体检测项目介绍,3.4 Fast R-CNN。YOLO与SSD,4.3 案例:SSD进行物体检测4.3.1 案例效果,4.3.2 案例需求,4.3.3 步骤分析以及代码,2.1.1 常用目标检测数据集,2.1.2 pascal voc数据集介绍,2.1.3 XML。商品检测数据集训练,5.2 标注数据读取与存储5.2.1 案例:xml读取本地文件存储到pkl,5.3.1 案例训练结果,5.3.2 案例思路,5.3.3 多GPU训练代码修改,5.4.1 预测代码,5.4.1 keras 模型进行TensorFlow导出。

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


全套教程部分目录:


部分文件图片:

TensorFlow介绍

说明TensorFlow的数据流图结构
应用TensorFlow操作图
说明会话在TensorFlow程序中的作用
应用TensorFlow实现张量的创建、形状类型修改操作
应用Variable实现变量op的创建
应用Tensorboard实现图结构以及张量值的显示
应用tf.train.saver实现TensorFlow的模型保存以及加载
应用tf.app.flags实现命令行参数添加和使用
应用TensorFlow实现线性回归

1.2 神经网络基础

学习目标

  • 目标

  • 知道逻辑回归的算法计算输出、损失函数

  • 知道导数的计算图
  • 知道逻辑回归的梯度下降算法
  • 知道多样本的向量计算

  • 应用

  • 应用完成向量化运算

  • 应用完成一个单神经元神经网络的结构

1.2.1 Logistic回归

1.2.1.1 Logistic回归

逻辑回归是一个主要用于二分分类类的算法。那么逻辑回归是给定一个 x x x, 输出一个该样本属于1对应类别的预测概率 y ^ = P ( y = 1 ∣ x ) \hat{y}=P(y=1|x) y^=P(y=1x)

Logistic 回归中使用的参数如下:

e − z e^{-z} ez的函数如下

例如:

损失计算过程

1.2.1.2 逻辑回归损失函数

损失函数(loss function)用于衡量预测结果与真实值之间的误差。最简单的损失函数定义方式为平方差损失:

L ( y ^ , y ) = 1 2 ( y ^ − y ) 2 L(\hat{y},y) = \frac{1}{2}(\hat{y}-y)^2 L(y^,y)=21(y^y)2

逻辑回归一般使用 L ( y ^ , y ) = − ( y log y ^ ) − ( 1 − y ) log ( 1 − y ^ ) L(\hat{y},y) = -(y\log\hat{y})-(1-y)\log(1-\hat{y}) L(y^,y)=(ylogy^)(1y)log(1y^)

该式子的理解:

  • 如果y=1,损失为 − log y ^ - \log\hat{y} logy^,那么要想损失越小, y ^ \hat{y} y^的值必须越大,即越趋近于或者等于1
  • 如果y=0,损失为 1 log ( 1 − y ^ ) 1\log(1-\hat{y}) 1log(1y^),那么要想损失越小,那么 y ^ \hat{y} y^的值越小,即趋近于或者等于0

损失函数是在单个训练样本中定义的,它衡量了在单个训练样本上的表现。代价函数(cost function)衡量的是在全体训练样本上的表现,即衡量参数 w 和 b 的效果,所有训练样本的损失平均值

J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) J(w,b) = \frac{1}{m}\sum_{i=1}^mL(\hat{y}^{(i)},y^{(i)}) J(w,b)=m1i=1mL(y^(i),y(i))

1.2.2 梯度下降算法

目的:使损失函数的值找到最小值

方式:梯度下降

函数的梯度(gradient)指出了函数的最陡增长方向。梯度的方向走,函数增长得就越快。那么按梯度的负方向走,函数值自然就降低得最快了。模型的训练目标即是寻找合适的 w 与 b 以最小化代价函数值。假设 w 与 b 都是一维实数,那么可以得到如下的 J 关于 w 与 b 的图:

可以看到,成本函数 J 是一个凸函数,与非凸函数的区别在于其不含有多个局部最低。

参数w和b的更新公式为:

w : = w − α d J ( w , b ) d w w := w - \alpha\frac{dJ(w, b)}{dw} w:=wαdwdJ(w,b) b : = b − α d J ( w , b ) d b b := b - \alpha\frac{dJ(w, b)}{db} b:=bαdbdJ(w,b)

注:其中 α 表示学习速率,即每次更新的 w 的步伐长度。当 w 大于最优解 w′ 时,导数大于 0,那么 w 就会向更小的方向更新。反之当 w 小于最优解 w′ 时,导数小于 0,那么 w 就会向更大的方向更新。迭代直到收敛。

通过平面来理解梯度下降过程:

1.2.3 导数

理解梯度下降的过程之后,我们通过例子来说明梯度下降在计算导数意义或者说这个导数的意义。

1.2.3.1 导数

导数也可以理解成某一点处的斜率。斜率这个词更直观一些。

  • 各点处的导数值一样

我们看到这里有一条直线,这条直线的斜率为4。我们来计算一个例子

例:取一点为a=2,那么y的值为8,我们稍微增加a的值为a=2.001,那么y的值为8.004,也就是当a增加了0.001,随后y增加了0.004,即4倍

那么我们的这个斜率可以理解为当一个点偏移一个不可估量的小的值,所增加的为4倍。

可以记做 f ( a ) d a \frac{f(a)}{da} daf(a)或者 d d a f ( a ) \frac{d}{da}f(a) dadf(a)

  • 各点的导数值不全一致

例:取一点为a=2,那么y的值为4,我们稍微增加a的值为a=2.001,那么y的值约等于4.004(4.004001),也就是当a增加了0.001,随后y增加了4倍

取一点为a=5,那么y的值为25,我们稍微增加a的值为a=5.001,那么y的值约等于25.01(25.010001),也就是当a增加了0.001,随后y增加了10倍

可以得出该函数的导数2为2a。

  • 更多函数的导数结果
函数导数
f(a)=a2f(a) = a^2f(a)=a​2​​2a2a2a
f(a)=a3f(a)=a^3f(a)=a​3​​3a23a^23a​2​​
f(a)=ln(a)f(a)=ln(a)f(a)=ln(a)1a\frac{1}{a}​a​​1​​
f(a)=eaf(a) = e^af(a)=e​a​​eae^ae​a​​
σ(z)=11+e−z\sigma(z) = \frac{1}{1+e^{-z}}σ(z)=​1+e​−z​​​​1​​σ(z)(1−σ(z))\sigma(z)(1-\sigma(z))σ(z)(1−σ(z))
g(z)=tanh(z)=ez−e−zez+e−zg(z) = tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}g(z)=tanh(z)=​e​z​​+e​−z​​​​e​z​​−e​−z​​​​1−(tanh(z))2=1−(g(z))21-(tanh(z))^2=1-(g(z))^21−(tanh(z))​2​​=1−(g(z))​2​​
1.2.3.2 导数计算图

那么接下来我们来看看含有多个变量的到导数流程图,假设 J ( a , b , c ) = 3 ( a + b c ) J(a,b,c) = 3{(a + bc)} J(a,b,c)=3(a+bc)

我们以下面的流程图代替

这样就相当于从左到右计算出结果,然后从后往前计算出导数

  • 导数计算

问题:那么现在我们要计算J相对于三个变量a,b,c的导数?

假设b=4,c=2,a=7,u=8,v=15,j=45

  • d J d v = 3 \frac{dJ}{dv}=3 dvdJ=3

增加v从15到15.001,那么 J ≈ 4 5 . 0 0 3 J\approx45.003 J45.003

  • d J d a = 3 \frac{dJ}{da}=3 dadJ=3

增加a从7到7.001,那么 v = ≈ 1 5 . 0 0 1 v=\approx15.001 v=15.001 J ≈ 4 5 . 0 0 3 J\approx45.003 J45.003

这里也涉及到链式法则

1.2.3.3 链式法则
  • d J d a = d J d v d v d a = 3 ∗ 1 = 3 \frac{dJ}{da}=\frac{dJ}{dv}\frac{dv}{da}=3*1=3 dadJ=dvdJdadv=31=3

J相对于a增加的量可以理解为J相对于v*v相对于a增加的

接下来计算

  • d J d b = 6 = d J d u d u d b = 3 ∗ 2 \frac{dJ}{db}=6=\frac{dJ}{du}\frac{du}{db}=3*2 dbdJ=6=dudJdbdu=32

  • d J d c = 9 = d J d u d u d c = 3 ∗ 3 \frac{dJ}{dc}=9=\frac{dJ}{du}\frac{du}{dc}=3*3 dcdJ=9=dudJdcdu=33

1.2.3.4 逻辑回归的梯度下降

逻辑回归的梯度下降过程计算图,首先从前往后的计算图得出如下

  • z = w T x + b z = w^Tx + b z=wTx+b

  • y ^ = a = σ ( z ) \hat{y} =a= \sigma(z) y^=a=σ(z)

  • L ( y ^ , y ) = − ( y log a ) − ( 1 − y ) log ( 1 − a ) L(\hat{y},y) = -(y\log{a})-(1-y)\log(1-a) L(y^,y)=(yloga)(1y)log(1a)

那么计算图从前向过程为,假设样本有两个特征

问题:计算出 J J J关于 z z z的导数

  • d z = d J d a d a d z = a − y dz = \frac{dJ}{da}\frac{da}{dz} = a-y dz=dadJdzda=ay
  • d J d a = − y a + 1 − y 1 − a \frac{dJ}{da} = -\frac{y}{a} + \frac{1-y}{1-a} dadJ=ay+1a1y
  • d a d z = a ( 1 − a ) \frac{da}{dz} = a(1-a) dzda=a(1a)

所以我们这样可以求出总损失相对于 w 1 , w 2 , b w_1,w_2,b w1,w2,b参数的某一点导数,从而可以更新参数

  • d J d w 1 = d J d z d z d w 1 = d z ∗ x 1 \frac{dJ}{dw_1} = \frac{dJ}{dz}\frac{dz}{dw_1}=dz*x1 dw1dJ=dzdJdw1dz=dzx1
  • d J d w 2 = d J d z d z d w 1 = d z ∗ x 2 \frac{dJ}{dw_2} = \frac{dJ}{dz}\frac{dz}{dw_1}=dz*x2 dw2dJ=dzdJdw1dz=dzx2
  • d J d b = d z \frac{dJ}{db}=dz dbdJ=dz

相信上面的导数计算应该都能理解了,所以当我们计算损失函数的某个点相对于 w 1 , w 2 , b w_1,w_2,b w1,w2,b的导数之后,就可以更新这次优化后的结果。

w 1 : = w 1 − α d J ( w 1 , b ) d w 1 w_1 := w_1 - \alpha\frac{dJ(w_1, b)}{dw_1} w1:=w1αdw1dJ(w1,b)

w 2 : = w 2 − α d J ( w 2 , b ) d w 2 w_2 := w_2 - \alpha\frac{dJ(w_2, b)}{dw_2} w2:=w2αdw2dJ(w2,b)

b : = b − α d J ( w , b ) d b b := b - \alpha\frac{dJ(w, b)}{db} b:=bαdbdJ(w,b)

1.2.4 向量化编程

每更新一次梯度时候,在训练期间我们会拥有m个样本,那么这样每个样本提供进去都可以做一个梯度下降计算。所以我们要去做在所有样本上的计算结果、梯度等操作

J ( w , b ) = 1 m ∑ i = 1 m L ( a ( i ) , y ( i ) ) J(w,b) = \frac{1}{m}\sum_{i=1}^mL({a}^{(i)},y^{(i)}) J(w,b)=m1i=1mL(a(i),y(i))

计算参数的梯度为:这样,我们想要得到最终的 d w 1 , d w 2 , d b d{w_1},d{w_2},d{b} dw1,dw2,db,如何去设计一个算法计算?伪代码实现:

1.2.4.1 向量化优势

什么是向量化

由于在进行计算的时候,最好不要使用for循环去进行计算,因为有Numpy可以进行更加快速的向量化计算。

在公式 z = w T x + b z = w^Tx+b z=wTx+b w , x w,x w,x都可能是多个值,也就是

import numpy as np
import time
a = np.random.rand(100000)
b = np.random.rand(100000)
  • 第一种方法
# 第一种for 循环c = 0
start = time.time()
for i in range(100000):c += a[i]*b[i]
end = time.time()print("计算所用时间%s " % str(1000*(end-start)) + "ms")
  • 第二种向量化方式使用np.dot
# 向量化运算start = time.time()
c = np.dot(a, b)
end = time.time()
print("计算所用时间%s " % str(1000*(end-start)) + "ms")

Numpy能够充分的利用并行化,Numpy当中提供了很多函数使用

函数作用
np.ones or np.zeros全为1或者0的矩阵
np.exp指数计算
np.log对数计算
np.abs绝对值计算

所以上述的m个样本的梯度更新过程,就是去除掉for循环。原本这样的计算

1.2.4.2 向量化实现伪代码
  • 思路
z1=wTx1+bz^1 = w^Tx^1+bz​1​​=w​T​​x​1​​+bz2=wTx2+bz^2 = w^Tx^2+bz​2​​=w​T​​x​2​​+bz3=wTx3+bz^3 = w^Tx^3+bz​3​​=w​T​​x​3​​+b
a1=σ(z1)a^1 = \sigma(z^1)a​1​​=σ(z​1​​)a2=σ(z2)a^2 = \sigma(z^2)a​2​​=σ(z​2​​)a3=σ(z3)a^3 = \sigma(z^3)a​3​​=σ(z​3​​)

可以变成这样的计算

注:w的形状为(n,1), x的形状为(n, m),其中n为特征数量,m为样本数量

我们可以让,得出的结果为(1, m)大小的矩阵 注:大写的wx为多个样本表示

  • 实现多个样本向量化计算的伪代码

这相当于一次使用了M个样本的所有特征值与目标值,那我们知道如果想多次迭代,使得这M个样本重复若干次计算

1.2.5 案例:实现逻辑回归

1.2.5.1使用数据:制作二分类数据集
from sklearn.datasets import load_iris, make_classification
from sklearn.model_selection import train_test_split
import tensorflow as tf
import numpy as npX, Y = make_classification(n_samples=500, n_features=5, n_classes=2)
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3)
1.2.5.2 步骤设计:

分别构建算法的不同模块

  • 1、初始化参数
def initialize_with_zeros(shape):"""创建一个形状为 (shape, 1) 的w参数和b=0.return:w, b"""w = np.zeros((shape, 1))b = 0return w, b
  • 计算成本函数及其梯度

  • w (n,1).T * x (n, m)

  • y: (1, n)
def propagate(w, b, X, Y):"""参数:w,b,X,Y:网络参数和数据Return:损失cost、参数W的梯度dw、参数b的梯度db"""m = X.shape[1]# w (n,1), x (n, m)A = basic_sigmoid(np.dot(w.T, X) + b)# 计算损失cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))dz = A - Ydw = 1 / m * np.dot(X, dz.T)db = 1 / m * np.sum(dz)cost = np.squeeze(cost)grads = {"dw": dw,"db": db}return grads, cost

需要一个基础函数sigmoid

def basic_sigmoid(x):"""计算sigmoid函数"""s = 1 / (1 + np.exp(-x))return s
  • 使用优化算法(梯度下降)

  • 实现优化函数. 全局的参数随着w,b对损失J进行优化改变. 对参数进行梯度下降公式计算,指定学习率和步长。

  • 循环:

    • 计算当前损失
    • 计算当前梯度
    • 更新参数(梯度下降)
def optimize(w, b, X, Y, num_iterations, learning_rate):"""参数:w:权重,b:偏置,X特征,Y目标值,num_iterations总迭代次数,learning_rate学习率Returns:params:更新后的参数字典grads:梯度costs:损失结果"""costs = []for i in range(num_iterations):# 梯度更新计算函数grads, cost = propagate(w, b, X, Y)# 取出两个部分参数的梯度dw = grads['dw']db = grads['db']# 按照梯度下降公式去计算w = w - learning_rate * dwb = b - learning_rate * dbif i % 100 == 0:costs.append(cost)if i % 100 == 0:print("损失结果 %i: %f" %(i, cost))print(b)params = {"w": w,"b": b}grads = {"dw": dw,"db": db}return params, grads, costs
  • 预测函数(不用实现)

利用得出的参数来进行测试得出准确率

def predict(w, b, X):'''利用训练好的参数预测return:预测结果'''m = X.shape[1]y_prediction = np.zeros((1, m))w = w.reshape(X.shape[0], 1)# 计算结果A = basic_sigmoid(np.dot(w.T, X) + b)for i in range(A.shape[1]):if A[0, i] <= 0.5:y_prediction[0, i] = 0else:y_prediction[0, i] = 1return y_prediction
  • 整体逻辑

  • 模型训练

def model(x_train, y_train, x_test, y_test, num_iterations=2000, learning_rate=0.0001):""""""# 修改数据形状x_train = x_train.reshape(-1, x_train.shape[0])x_test = x_test.reshape(-1, x_test.shape[0])y_train = y_train.reshape(1, y_train.shape[0])y_test = y_test.reshape(1, y_test.shape[0])print(x_train.shape)print(x_test.shape)print(y_train.shape)print(y_test.shape)# 1、初始化参数w, b = initialize_with_zeros(x_train.shape[0])# 2、梯度下降# params:更新后的网络参数# grads:最后一次梯度# costs:每次更新的损失列表params, grads, costs = optimize(w, b, x_train, y_train, num_iterations, learning_rate)# 获取训练的参数# 预测结果w = params['w']b = params['b']y_prediction_train = predict(w, b, x_train)y_prediction_test = predict(w, b, x_test)# 打印准确率print("训练集准确率: {} ".format(100 - np.mean(np.abs(y_prediction_train - y_train)) * 100))print("测试集准确率: {} ".format(100 - np.mean(np.abs(y_prediction_test - y_test)) * 100))return None
  • 训练
model(x_train, y_train, x_test, y_test, num_iterations=2000, learning_rate=0.0001)

未完待续, 同学们请等待下一期

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/793145.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

整数与浮点数在内存中的存储

整数与浮点数在内存中的存储 一&#xff0c;大小端存储二&#xff0c;整数在内存中的存储三&#xff0c;浮点数在内存中的存储3.1浮点数的存储规则3.2浮点数的存储过程3.2.1有效数字M3.2.2指数E3.2.3浮点数存储的特殊情况4&#xff0c;例题讲解 在C语言的编程中&#xff0c;我们…

分布式系统架构中的相关概念

1.1、衡量网站的性能指标 响应时间&#xff1a;指执行一个请求从开始到最后收到响应数据所花费的总体时间。并发数&#xff1a;指系统同时能处理的请求数量。 并发连接数&#xff1a;指的是客户端向服务器发起请求&#xff0c;并建立了TCP连接。每秒钟服务器连接的总TCP数量请…

Python--Django--说明

Django 是基于python 的 Web 开发框架. &nsbp;   Web开发指的是开发基于B/S 架构, 通过前后端的配合, 将后台服务器上的数据在浏览器上展现给前台用户的应用. &nsbp;   在早期, 没有Web框架的时候, 使用 Python CGI 脚本显示数据库中的数据. Web框架致力于解决一些…

c++宏有什么离谱操作?

Boost.Preprocessor确实是一个非常强大而复杂的C宏库&#xff0c;专门用于元编程&#xff0c;即在编译时进行代码生成和变换。我这里有一套编程入门教程&#xff0c;不仅包含了详细的视频讲解&#xff0c;项目实战。如果你渴望学习编程不妨点个关注&#xff0c;给个评论222&…

面试总结------2024/04/04

1.面试官提问&#xff1a;你说你在项目中使用springsecurity jwt 实现了登录功能&#xff0c;能简单讲一下怎么实现的吗&#xff1f; 2.使用RabbitMQ实现订单超时取消功能 订单状态定义 首先&#xff0c;我们需要定义订单的不同状态。在这个示例中&#xff0c;我们可以定义以下…

实验一 Windows 2008虚拟机安装、安装VM Tools、快照和链接克隆、添加硬盘修改格式为GPT

一、安装vmware workstation软件 VMware workstation的安装介质&#xff0c;获取路径&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1AUAw_--yjZAUPbsR7StOJQ 提取码&#xff1a;umz1 所在目录&#xff1a;\vmware\VMware workstation 15.1.0 1.找到百度网盘中vmwa…

Pandas Dataframe合并连接Join和merge 参数讲解

文章目录 函数与参数分析otheronhowlsuffix, rsuffix, suffixesleft_index, right_index 函数与参数分析 在pandas中主要有两个函数可以完成table之间的join Join的函数如下&#xff1a; DataFrame.join(other, onNone, how‘left’, lsuffix‘’, rsuffix‘’, sortFalse, v…

YOLOv8 UI界面设计+热力图显示

进入可视化设计界面&#xff0c;设计UI pyside6-designer 设计好UI保存&#xff0c;然后通过以下命令将ui文件保存为py pyside6-uic myui.ui > myui.py 通过以下命令将资源文件qrc保存为py pyside6-rcc my_rc.qrc > my_rc.py 写主窗口函数实现功能... 项目基于yol…

基于Spring Boot的职称评审管理系统

基于Spring Boot的职称评审管理系统 开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/idea 部分系统展示 前台首页界面 用户注册登录界面 管理员登录界面 个人中心界面…

Driver not loaded之记录Qt访问MySql的解决经历

对于这个问题的本质原因&#xff0c;我也搞不明白&#xff0c;所以记录的方法不一定对所有人行之有效。我的目的很简单&#xff0c;就是把数据库用起来&#xff0c;经过查找网上资料&#xff0c;最终把数据库跑起来了。因此记录如下&#xff1a; 1&#xff0c;出现这个问题是缺…

【Go】十六、文件操作

文章目录 1、打开和关闭文件2、IO3、一次性读文件4、带缓冲区的读文件5、写入文件6、文件复制 1、打开和关闭文件 package main import("fmt""os" ) func main(){//打开文件&#xff1a;file,err : os.Open("d:/Test.txt");if err ! nil {//出错…

【医学影像数据处理】nii 数据格式文件操作汇总

大部分医学领域数据存储的都是dicom格式&#xff0c;但是对于CT等一类的序号图像&#xff0c;就需要多个dicom文件独立存储&#xff0c;最终构成一个序列series&#xff0c;这样存储就太过于复杂了。 nifti&#xff08;Neuroimaging Informatics Technology Initiative&#x…

GT收发器64B66B协议(2)自定义PHY设计

文章目录 前言一、设计框图二、GT_module三、PHY_module3.1、PHY_tx模块3.2、PHY_rx_bitsync模块3.3、PHY_rx模块 四、上板测试 前言 有了对64B66B协议的认识以及我们之前设计8B10B自定义PHY的经验&#xff0c;本文开始对64B66B自定义PHY的设计 一、设计框图 二、GT_module …

蓝桥杯单片机速成8-NE555频率测量

一、原理图 NOTE&#xff1a;使用NE555测量频率之前&#xff0c;需要将J3-15(SIGNAL)与J3-16(P34短接) 在使用矩阵键盘的时候也记得把跳冒拔下&#xff0c;因为有公共引脚P34 又是因为他的输出引脚是P34&#xff0c;所以只能用定时器0来作为计数器进行频率测量了 二、代码实现 …

CSS设置网页背景

目录 概述&#xff1a; 1.background-color: 2.background-image&#xff1a; 3.background-repeat&#xff1a; 4.background-position&#xff1a; 5.background-attachment&#xff1a; 6.background-size&#xff1a; 7.background-origin&#xff1a; 8.background-…

Linux初学(十四)LampLnmp

一、简介 LAMP和LNMP是两种常见的web服务器组合。具体如下&#xff1a; LAMP&#xff1a;LAMP代表的是Linux&#xff08;操作系统&#xff09; Apache&#xff08;HTTP服务器&#xff09; MySQL&#xff08;数据库&#xff09; PHP&#xff08;编程语言&#xff09;。这个组合被…

C++利用键值对计算某一个数对应的最值及其索引位置

目录 一、算法概述二、代码实现1、计算最值2、计算最值及其索引 三、结果展示 本文由CSDN点云侠原创&#xff0c;原文链接。如果你不是在点云侠的博客中看到该文章&#xff0c;那么此处便是不要脸的爬虫与GPT。 一、算法概述 类似下图所示&#xff0c;计算第一列中1或2对应的最…

线段树练习

1.单点修改区间查询 P3374 【模板】树状数组 1 题目描述 如题&#xff0c;已知一个数列&#xff0c;你需要进行下面两种操作&#xff1a; 将某一个数加上 x 求出某区间每一个数的和 输入格式 第一行包含两个正整数 n,m&#xff0c;分别表示该数列数字的个数和操作的总个…

ChatGPT 与 OpenAI 的现代生成式 AI(下)

原文&#xff1a;Modern Generative AI with ChatGPT and OpenAI Models 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 七、通过 ChatGPT 掌握营销技巧 在本章中&#xff0c;我们将重点介绍营销人员如何利用 ChatGPT&#xff0c;在这一领域中查看 ChatGPT 的主要用例…

Delphi编写的图片查看器

UNIT Unit17;INTERFACEUSESWinapi.Windows, Winapi.Messages, System.SysUtils, System.Variants,System.Classes, Vcl.Graphics, Vcl.Controls, Vcl.Forms, Vcl.Dialogs,Vcl.StdCtrls, Vcl.ExtDlgs, Vcl.ExtCtrls, Vcl.Imaging.jpeg; //注意&#xff1a;要加入jpej 否侧浏览图…