leetcode刷题-代码训练营-第7章-回溯算法1

回溯法模板

void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
}

理解

 从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了

回溯法解决的问题都可以抽象为树形结构(N叉树),用树形结构来理解回溯就容易多了

第77题. 组合

 理解

回溯代码

class Solution {
private:vector<vector<int>> result; // 存放符合条件结果的集合vector<int> path; // 用来存放符合条件结果void backtracking(int n, int k, int startIndex) {if (path.size() == k) {result.push_back(path);return;}for (int i = startIndex; i <= n; i++) {path.push_back(i); // 处理节点 backtracking(n, k, i + 1); // 递归path.pop_back(); // 回溯,撤销处理的节点}}
public:vector<vector<int>> combine(int n, int k) {result.clear(); // 可以不写path.clear();   // 可以不写backtracking(n, k, 1);return result;}
};

剪枝操作

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(int n, int k, int startIndex) {if (path.size() == k) {result.push_back(path);return;}for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { // 优化的地方path.push_back(i); // 处理节点backtracking(n, k, i + 1);path.pop_back(); // 回溯,撤销处理的节点}}
public:vector<vector<int>> combine(int n, int k) {backtracking(n, k, 1);return result;}
};

216.组合总和III

思路

回溯算法

class Solution {
private:vector<vector<int>> result; // 存放结果集vector<int> path; // 符合条件的结果// targetSum:目标和,也就是题目中的n。// k:题目中要求k个数的集合。// sum:已经收集的元素的总和,也就是path里元素的总和。// startIndex:下一层for循环搜索的起始位置。void backtracking(int targetSum, int k, int sum, int startIndex) {if (path.size() == k) {if (sum == targetSum) result.push_back(path);return; // 如果path.size() == k 但sum != targetSum 直接返回}for (int i = startIndex; i <= 9; i++) {sum += i; // 处理path.push_back(i); // 处理backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndexsum -= i; // 回溯path.pop_back(); // 回溯}}public:vector<vector<int>> combinationSum3(int k, int n) {result.clear(); // 可以不加path.clear();   // 可以不加backtracking(n, k, 0, 1);return result;}
};

剪枝操作

class Solution {
private:vector<vector<int>> result; // 存放结果集vector<int> path; // 符合条件的结果void backtracking(int targetSum, int k, int sum, int startIndex) {if (sum > targetSum) { // 剪枝操作return; // 如果path.size() == k 但sum != targetSum 直接返回}if (path.size() == k) {if (sum == targetSum) result.push_back(path);return;}for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝sum += i; // 处理path.push_back(i); // 处理backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndexsum -= i; // 回溯path.pop_back(); // 回溯}}public:vector<vector<int>> combinationSum3(int k, int n) {result.clear(); // 可以不加path.clear();   // 可以不加backtracking(n, k, 0, 1);return result;}
};

17.电话号码的字母组合

 39. 组合总和

思路

回溯法代码

// 版本一
class Solution {
private:const string letterMap[10] = {"", // 0"", // 1"abc", // 2"def", // 3"ghi", // 4"jkl", // 5"mno", // 6"pqrs", // 7"tuv", // 8"wxyz", // 9};
public:vector<string> result;string s;void backtracking(const string& digits, int index) {if (index == digits.size()) {result.push_back(s);return;}int digit = digits[index] - '0';        // 将index指向的数字转为intstring letters = letterMap[digit];      // 取数字对应的字符集for (int i = 0; i < letters.size(); i++) {s.push_back(letters[i]);            // 处理backtracking(digits, index + 1);    // 递归,注意index+1,一下层要处理下一个数字了s.pop_back();                       // 回溯}}vector<string> letterCombinations(string digits) {s.clear();result.clear();if (digits.size() == 0) {return result;}backtracking(digits, 0);return result;}
};

思路

回溯算法

// 版本一
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {if (sum > target) {return;}if (sum == target) {result.push_back(path);return;}for (int i = startIndex; i < candidates.size(); i++) {sum += candidates[i];path.push_back(candidates[i]);backtracking(candidates, target, sum, i); // 不用i+1了,表示可以重复读取当前的数sum -= candidates[i];path.pop_back();}}
public:vector<vector<int>> combinationSum(vector<int>& candidates, int target) {result.clear();path.clear();backtracking(candidates, target, 0, 0);return result;}
};

优化代码

 对总集合排序之后,如果下一层的sum(就是本层的 sum + candidates[i])已经大于target,就可以结束本轮for循环的遍历

在求和问题中,排序之后加剪枝是常见的套路!

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {if (sum == target) {result.push_back(path);return;}// 如果 sum + candidates[i] > target 就终止遍历for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {sum += candidates[i];path.push_back(candidates[i]);backtracking(candidates, target, sum, i);sum -= candidates[i];path.pop_back();}}
public:vector<vector<int>> combinationSum(vector<int>& candidates, int target) {result.clear();path.clear();sort(candidates.begin(), candidates.end()); // 需要排序backtracking(candidates, target, 0, 0);return result;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/792209.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小林coding图解计算机网络|基础篇02|键入网址到网页显示,期间发生了什么?

小林coding网站通道&#xff1a;入口 本篇文章摘抄应付面试的重点内容&#xff0c;详细内容还请移步&#xff1a;小林coding网站通道 文章目录 孤单小弟——HTTP真实地址查询——DNS指南好帮手——协议栈可靠传输——TCP远程定位——IP两点传输——MAC出口——网卡送别者——交…

Linux是什么,该如何学习

&#x1f407;明明跟你说过&#xff1a;个人主页 &#x1f3c5;个人专栏&#xff1a;《Linux &#xff1a;从菜鸟到飞鸟的逆袭》 &#x1f3c5; &#x1f516;行路有良友&#xff0c;便是天堂&#x1f516; 目录 一、引言 1、Linux的起源与发展 2、Linux在现代计算机领域…

Golang 内存管理和垃圾回收底层原理(一)

一、这篇文章我们来聊聊Golang内存管理和垃圾回收&#xff0c;主要注重基本底层原理讲解&#xff0c;进一步实战待后续文章 1、这篇我们来讨论一下Golang的内存管理 先上结构图 从图我们来讲Golang的基本内存结构&#xff0c;内存结构可以分为&#xff1a;协程缓存、中央缓存…

Excel 粘贴回筛选后的单元格不能完全粘老是少数据 ,有些单元格还是空的

环境&#xff1a; excel2021 Win10专业版 问题描述&#xff1a; excel 粘贴回筛选后的单元格不能完全粘老是少数据 有些单元格还是空的 复制选择筛选后A1-A10单元格 &#xff0c;定位条件&#xff09;&#xff08;仅可见单元格&#xff09;来访问&#xff0c;或者你可以使用…

mybatis-plus 表字段存在关键字的处理办法

一、问题复现 当数据库表中字段出现关键字时&#xff0c;若不做其他处理&#xff0c;mybatis-plus的BaseMapper并不会做其他的处理&#xff0c;最终导致SQL执行时&#xff0c;抛出SQL 语法错误。示例如下&#xff1a; Java查询语句 QueryWrapper<User> userQuery new …

Kubernetes(k8s)核心资源解析:Pod详解

Kubernetes核心资源解析&#xff1a;Pod详解 1、什么是Pod&#xff1f;2、Pod 的组成3、Pod 如何管理多个容器4、Pod 的网络5、Pod 的存储方式6、Pod 的工作方式6.1 自主式 Pod6.2 监控和管理 Pod6.3 Pod 的创建流程 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收…

解锁动态规划:从斐波那契到高效算法

动态规划&#xff08;Dynamic Programming, DP&#xff09;是解决优化问题的一种算法策略&#xff0c;它将一个复杂问题分解为更小的子问题&#xff0c;通过解决子问题来逐步找到复杂问题的最优解。动态规划适用于有重叠子问题和最优子结构性质的问题。接下来&#xff0c;我们通…

基于SSM的药店药品商城管理系统

介绍 本项目分为前后台&#xff0c;分为管理员与普通用户两种角色&#xff0c;管理员登录后台&#xff0c;普通用户登录前台&#xff1b; 管理员角色包含以下功能&#xff1a; 管理员登录,订单管理,客户管理,药品管理,类目管理等功能。用户角色包含以下功能&#xff1a; 用户首…

pycharm打包python文件为exe文件(图文教程)

1.安装pyinstaller库 pip3 install pyinstaller 2.使用pyinstaller 打包文件 首先确保Terminal命令行中&#xff0c;你的路径和你的项目是同一个路径 我的项目就是放在golden_dev中的。 3.命令行内输入打包代码 pyinstaller -F -w gold_miner.py gold_miner.py 是我的项目…

高斯消元详解

算法概述 高斯消元法是一个用来求解线性方程组的算法 那么什么是线性方程组呢? 线性:每个未知数次数都为1次方程组:多个方程&#xff0c;多个未知数。 &#xff08;a1x1a2x2..anxnbn&#xff09;x为一次的 当x是平方的时候就不是线性 简而言之就是有多个未知数&#xff…

0基础学习Mybatis系列数据库操作框架——多环境配置

大纲 配置代码参考资料 在实际开发中&#xff0c;我们往往会将开发环境分成&#xff1a;开发、测试、线上等环境。这些环境的数据源不一样&#xff0c;比如开发环境就不能访问线上环境&#xff0c;否则极容易出现线上数据污染等问题。Mybatis通过多环境配置分开定义来解决这个问…

Shell脚本之基本语法

目录 一、变量定义 变量命名规则&#xff1a; 变量的赋值&#xff1a; 只读变量&#xff1a; 删除变量&#xff1a; 二、变量的类型 自定义变量&#xff1a; 环境变量&#xff1a; 位置参数&#xff1a; 预定义变量&#xff1a; 三、键盘输入 四、数值运算 为什么…

数据结构—堆

什么是堆 堆是一种特殊的树形结构&#xff0c;其中每个节点都有一个值。堆可以分为两种类型&#xff1a;最大堆和最小堆。在最大堆中&#xff0c;每个节点的值都大于等于其子节点的值&#xff1b;而在最小堆中&#xff0c;每个节点的值都小于等于其子节点的值。这种特性使得堆…

RPA自动化小红书自动化写文以及发文!

1、视频演示 RPA自动化小红书自动写作发文 2、核心功能点 采集笔记&#xff1a;采集小红书上点赞量大于1000的爆款笔记 下载素材&#xff1a;下载爆款笔记的主图 爆款改写&#xff1a;根据爆款笔记的标题仿写新的标题以及新的文案 自动发布&#xff1a;将爆款笔记发布到小红…

Three.js——scene场景、几何体位置旋转缩放、正射投影相机、透视投影相机

个人简介 &#x1f440;个人主页&#xff1a; 前端杂货铺 &#x1f64b;‍♂️学习方向&#xff1a; 主攻前端方向&#xff0c;正逐渐往全干发展 &#x1f4c3;个人状态&#xff1a; 研发工程师&#xff0c;现效力于中国工业软件事业 &#x1f680;人生格言&#xff1a; 积跬步…

第N6周:使用Word2vec实现文本分类

import torch import torch.nn as nn import torchvision from torchvision import transforms,datasets import os,PIL,pathlib,warnings #忽略警告信息 warnings.filterwarnings("ignore") # win10系统 device torch.device("cuda"if torch.cuda.is_ava…

基于springboot+vue+Mysql的招生管理系统

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…

震惊!!原来阻塞队列消息队列这样理解会更简单!!!

震惊!!原来阻塞队列&&消息队列这样理解会更简单!!! 一:阻塞队列二:消息队列2.1:生产者消费者模型2.1.1:解耦合:2.1.2:削峰填谷: 三:消息队列代码3.1.13.1.2:3.1.3:生产慢,消费快,消费阻塞3.1.3:生产快,消费慢,生产阻塞 二级目录二级目录 一:阻塞队列 阻塞队列:先进先出…

gitcode 配置 SSH 公钥

在 gitcode 上配置SSH公钥后&#xff0c;可以通过SSH协议安全地访问远程仓库&#xff0c;无需每次都输入用户名和密码。以下是配置SSH公钥的步骤&#xff1a; 5分钟解决方案 用 OpenSSH公钥生成器 生成 公钥和私钥&#xff0c;私钥文件&#xff08;id_rsa&#xff09;下载&am…

【Leetcode】top 100 图论

基础知识补充 1.图分为有向图和无向图&#xff0c;有权图和无权图&#xff1b; 2.图的表示方法&#xff1a;邻接矩阵适合表示稠密图&#xff0c;邻接表适合表示稀疏图&#xff1b; 邻接矩阵&#xff1a; 邻接表&#xff1a; 基础操作补充 1.邻接矩阵&#xff1a; class GraphAd…