C++下基于粒子群算法解决TSP问题

粒子群优化算法求解TSP旅行商问题C++(2020.11.12)_jing_zhong的博客-CSDN博客

混合粒子群算法(PSO):C++实现TSP问题 - 知乎 (zhihu.com)

一、原理

又是一个猜答案的算法,和遗传算法比较像,也是设置迭代次数,控制什么时候结束,然后设置粒子种群,每个种群代表一个访问城市的路径,代价函数就是访问一遍的路径和。

初始的时候,随机初始化30个粒子群(可自己设置),然后从这30个例子群里,找一个种群代价最优的结果,存入gbest路径。接着就是每次迭代更新粒子种群,更新思路是每个粒子包含一条访问城市的路径,对每个粒子中的点产生一个速度(这个速度有一共对应公式,v = w * v_cur + c1 * r1 * (x_best - x_cur) +c2 * r2(x_gbest - x_cur)),通过这个速度更新访问城市的路径(x = x + v),当然这个速度作用于城市序号上,会产生小数和重叠,以及不能让这个速度太大,需要限定在一定范围内,如果出现城市序号重复,则需要将重复的序号换成没有出现的序号。

最后每迭代一次,计算一次全局最优粒子,直到迭代结束。

如果访问29个城市,暴力枚举需要计算28!= 304 888 344 611 713 860 501 504 000 000 。可见随着城市数量的增加,计算量是指数级上升,如果使用粒子群算法,计算量30*500=15000,计算量是线性的,确实很有优势。

二、代码 

   1    1150.0  1760.02     630.0  1660.03      40.0  2090.04     750.0  1100.05     750.0  2030.06    1030.0  2070.07    1650.0   650.08    1490.0  1630.09     790.0  2260.010     710.0  1310.011     840.0   550.012    1170.0  2300.013     970.0  1340.014     510.0   700.015     750.0   900.016    1280.0  1200.017     230.0   590.018     460.0   860.019    1040.0   950.020     590.0  1390.021     830.0  1770.022     490.0   500.023    1840.0  1240.024    1260.0  1500.025    1280.0   790.026     490.0  2130.027    1460.0  1420.028    1260.0  1910.029     360.0  1980.0
#include <iostream>
#include <string>
#include <fstream>
#include <time.h>
#include <random>
using namespace std;
const int citycount = 29;
double vmax = 1, vmin = -1;
std::default_random_engine random(time(NULL));//通过time这个随机数种子,每次产生不同的随机数
static std::uniform_real_distribution<double> distribution(0.0, std::nextafter(1.0, DBL_MAX));// C++11提供的实数均匀分布模板类  0~1
static std::uniform_real_distribution<double> distribution1(vmin, std::nextafter(vmax, DBL_MAX));//-1~1class City
{
public:string name;//城市名称double x, y;//城市点的二维坐标void shuchu(){std::cout << name + ":" << "(" << x << "," << y << ")" << endl;}
};class Graph
{
public:City city[citycount];//城市数组double distance[citycount][citycount];//城市间的距离矩阵void Readcoordinatetxt(string txtfilename)//读取城市坐标文件的函数{ifstream myfile(txtfilename, ios::in);double x = 0, y = 0;int z = 0;if (!myfile.fail()){int i = 0;while (!myfile.eof() && (myfile >> z >> x >> y)){city[i].name = to_string(z);//城市名称转化为字符串city[i].x = x; city[i].y = y;i++;}}elsecout << "文件不存在";myfile.close();//计算城市距离矩阵for (int i = 0; i < citycount; i++)//29for (int j = 0; j < citycount; j++){distance[i][j] = sqrt((pow((city[i].x - city[j].x), 2) + pow((city[i].y - city[j].y), 2)) / 10.0);//计算城市ij之间的伪欧式距离if (round(distance[i][j] < distance[i][j])) distance[i][j] = round(distance[i][j]) + 1;else distance[i][j] = round(distance[i][j]);//round向上取整}}void shuchu(){cout << "城市名称 " << "坐标x" << " " << "坐标y" << endl;for (int i = 0; i < citycount; i++)city[i].shuchu();cout << "距离矩阵: " << endl;for (int i = 0; i < citycount; i++){for (int j = 0; j < citycount; j++){if (j == citycount - 1)std::cout << distance[i][j] << endl;elsestd::cout << distance[i][j] << "  ";}}}
};Graph Map_City;//定义全局对象图,放在Graph类后
int * Random_N(int n)
{int *geti;geti = new int[n];int j = 0;while (j < n){while (true){int flag = -1;int temp = rand() % n + 1;//随机取1~29if (j > 0){int k = 0;for (; k < j; k++){if (temp == *(geti + k))break;}if (k == j){*(geti + j) = temp;flag = 1;}}else{*(geti + j) = temp;flag = 1;}if (flag == 1)break;}j++;}return geti;
}double Evaluate(int *x)//计算粒子适应值的函数
{double fitnessvalue = 0;for (int i = 0; i < citycount - 1; i++)fitnessvalue += Map_City.distance[x[i] - 1][x[i + 1] - 1];fitnessvalue += Map_City.distance[x[citycount - 1] - 1][x[0] - 1];//城市尾与第一个城市的距离,x是一组路线的序号return fitnessvalue;
}class Particle
{
public:int *x;//粒子的位置  一条路径int *v;//粒子的速度double fitness;void Init(){x = new int[citycount];v = new int[citycount];int *M = Random_N(citycount);//随机生成一组路径for (int i = 0; i < citycount; i++)x[i] = *(M + i);fitness = Evaluate(x);//计算这组路径的代价for (int i = 0; i < citycount; i++){v[i] = (int)distribution1(random);//产生-1~1之间的随机数}}void shuchu(){for (int i = 0; i < citycount; i++){if (i == citycount - 1)std::cout << x[i] << ") = " << fitness << endl;else if (i == 0)std::cout << "f(" << x[i] << ",";elsestd::cout << x[i] << ",";}}
};void Adjuxt_validParticle(Particle p)//调整粒子有效性的函数,使得粒子的位置符合TSP问题解的一个排列
{int route[citycount];//1-citycountbool flag[citycount];//对应route数组中是否在粒子的位置中存在的数组,参考数组为routeint biaoji[citycount];//对粒子每个元素进行标记的数组,参考数组为粒子位置xfor (int j = 0; j < citycount; j++){route[j] = j + 1;flag[j] = false;biaoji[j] = 0;}//首先判断粒子p的位置中是否有某个城市且唯一,若有且唯一,则对应flag的值为true,for (int j = 0; j < citycount; j++){int num = 0;for (int k = 0; k < citycount; k++){if (p.x[k] == route[j]){biaoji[k] = 1;//说明粒子中的k号元素对应的城市在route中,并且是第一次出现才进行标记num++; break;}}if (num == 0) flag[j] = false;//粒子路线中没有route[j]这个城市else if (num == 1) flag[j] = true;//粒子路线中有route[j]这个城市}for (int k = 0; k < citycount; k++){if (flag[k] == false)//粒子路线中没有route[k]这个城市,需要将这个城市加入到粒子路线中{int i = 0;for (; i < citycount; i++){if (biaoji[i] != 1)break;}p.x[i] = route[k];//对于标记为0的进行替换biaoji[i] = 1;}}
}class PSO
{
public:Particle *oldparticle; //当前粒子种群信息Particle *pbest; //每个个体最优Particle gbest;//群体最优double c1, c2, w;int Itetime;int popsize;void Init(int Pop_Size, int itetime, double C1, double C2, double W){Itetime = itetime;//迭代500次c1 = C1;//2c2 = C2;//2w = W;//0.8popsize = Pop_Size;//30oldparticle = new Particle[popsize];//30个粒子,每个粒子包含一条随机路径pbest = new Particle[popsize];//30个粒子for (int i = 0; i < popsize; i++)//初始化30次{oldparticle[i].Init();//初始化30个粒子群pbest[i].Init();//初始化30个粒子群for (int j = 0; j < citycount; j++){pbest[i].x[j] = oldparticle[i].x[j];pbest[i].fitness = oldparticle[i].fitness;}}gbest.Init(); //初始化一个粒子群gbest.fitness = INFINITY;//初始设为极大值for (int i = 0; i < popsize; i++)//遍历30个粒子群{if (pbest[i].fitness < gbest.fitness)//如果当前粒子群代价比种群最小的代价还小,则更新其{gbest.fitness = pbest[i].fitness;for (int j = 0; j < citycount; j++)//29个城市点gbest.x[j] = pbest[i].x[j];//最优路径的路径}}}void Shuchu(){for (int i = 0; i < popsize; i++){std::cout << "粒子" << i + 1 << "->";oldparticle[i].shuchu();}std::cout << "当前最优粒子:" << std::endl;gbest.shuchu();}void PSO_TSP(int Pop_size, int itetime, double C1, double C2, double W, double Vlimitabs, string filename){Map_City.Readcoordinatetxt(filename);//计算城市间距离矩阵Map_City.shuchu();//输出初始城市位置和距离矩阵vmax = Vlimitabs; //3vmin = -Vlimitabs;//-3Init(Pop_size, itetime, C1, C2, W);//在随机初始的粒子群中,找到一个最优的粒子std::cout << "初始化后的种群如下:" << endl;Shuchu();//输出初始种群及最优路径//向文件中写入城市坐标,距离矩阵ofstream outfile;outfile.open("result.txt", ios::trunc);outfile << "城市名称 " << "坐标x" << " " << "坐标y" << endl;for (int i = 0; i < citycount; i++)outfile << Map_City.city[i].name << " " << Map_City.city[i].x << " " << Map_City.city[i].y << endl;outfile << "距离矩阵: " << endl;for (int i = 0; i < citycount; i++){for (int j = 0; j < citycount; j++){if (j == citycount - 1)outfile << Map_City.distance[i][j] << endl;elseoutfile << Map_City.distance[i][j] << "  ";}}outfile << "初始化后的种群如下:" << endl;for (int i = 0; i < popsize; i++){outfile << "粒子" << i + 1 << "->";for (int j = 0; j < citycount; j++)//29{if (j == citycount - 1)outfile << oldparticle[i].x[j] << ") = " << oldparticle[i].fitness << endl;else if (j == 0)outfile << "f(" << oldparticle[i].x[j] << ",";elseoutfile << oldparticle[i].x[j] << ",";}}for (int ite = 0; ite < Itetime; ite++)//500次{for (int i = 0; i < popsize; i++)//30{//更新粒子速度和位置for (int j = 0; j < citycount; j++)//29{//v= w*v_oldP + c1*r1*(x_bestP - x_oldP) +c2*r2(x_gbest - x_oldP)oldparticle[i].v[j] = (int)(w*oldparticle[i].v[j] + c1 * distribution(random)*(pbest[i].x[j] - oldparticle[i].x[j]) + c2 * distribution(random)*(gbest.x[j] - oldparticle[i].x[j]));if (oldparticle[i].v[j] > vmax)//粒子速度越界调整oldparticle[i].v[j] = (int)vmax;else if (oldparticle[i].v[j] < vmin)oldparticle[i].v[j] = (int)vmin;oldparticle[i].x[j] += oldparticle[i].v[j];//x=x+vif (oldparticle[i].x[j] > citycount)oldparticle[i].x[j] = citycount;//粒子位置越界调整  让路径的每个点像速度一样变化取整else if (oldparticle[i].x[j] < 1) oldparticle[i].x[j] = 1;}//粒子位置有效性调整,必须满足解空间的条件Adjuxt_validParticle(oldparticle[i]);//对重复的城市去重oldparticle[i].fitness = Evaluate(oldparticle[i].x);//计算当前粒子的代价pbest[i].fitness = Evaluate(pbest[i].x);if (oldparticle[i].fitness < pbest[i].fitness)//如果当前粒子的代价比之前历史中粒子的代价都小,则替换为历史最小代价{for (int j = 0; j < citycount; j++)pbest[i].x[j] = oldparticle[i].x[j];}//更新单个粒子的历史极值for (int j = 0; j < citycount; j++)gbest.x[j] = pbest[i].x[j];//更新全局极值for (int k = 0; k < popsize && k != i; k++)//30  从单个最优中找一个全局最优保存起来{if (Evaluate(pbest[k].x) < Evaluate(gbest.x)){for (int j = 0; j < citycount; j++)gbest.x[j] = pbest[k].x[j];gbest.fitness = Evaluate(gbest.x);}}}//迭代30次outfile << "第" << ite + 1 << "次迭代后的种群如下:" << endl;for (int i = 0; i < popsize; i++){outfile << "粒子" << i + 1 << "->";for (int j = 0; j < citycount; j++){if (j == citycount - 1)outfile << oldparticle[i].x[j] << ") = " << oldparticle[i].fitness << endl;else if (j == 0)outfile << "f(" << oldparticle[i].x[j] << ",";elseoutfile << oldparticle[i].x[j] << ",";}}std::cout << "第" << ite + 1 << "次迭代后的最好粒子:";outfile << "第" << ite + 1 << "次迭代后的最好粒子:" << endl;for (int j = 0; j < citycount; j++){if (j == citycount - 1)outfile << gbest.x[j] << ") = " << gbest.fitness << endl;else if (j == 0)outfile << "f(" << gbest.x[j] << ",";elseoutfile << gbest.x[j] << ",";}gbest.shuchu();//每次迭代的全局最优}outfile.close();}
};int main()
{PSO pso;std::cout << "粒子群优化算法求解TSP旅行商问题" << endl;pso.PSO_TSP(30, 500, 2, 2, 0.8, 3.0, "data.txt");system("pause");return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/79122.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

入门人工智能 ——自然语言处理介绍,并使用 Python 进行文本情感分析(5)

入门人工智能 ——自然语言处理介绍&#xff0c;并使用 Python 进行文本情感分析&#xff08;5&#xff09;&#xff09; 入门人工智能 ——自然语言处理介绍&#xff0c;并使用 Python 进行文本情感分析介绍自然语言处理的挑战NLP的基本任务NLP的基本技术NLP的应用领域 使用 P…

FPGA的基础架构,什么是CLB?

本原创文章由深圳市小眼睛科技有限公司创作&#xff0c;版权归本公司所有&#xff0c;如需转载&#xff0c;需授权并注明出处 CLB是指可编程逻辑功能块&#xff08;Configurable Logic Blocks&#xff09;,顾名思义就是可编程的数字逻辑电路。CLB是FPGA内的三个基本逻辑单元。C…

与社交媒体结合:视频直播美颜sdk在社交平台上的应用

为了让直播内容更吸引人&#xff0c;视频直播美颜sdk&#xff08;Software Development Kit&#xff09;正逐渐崭露头角&#xff0c;为社交媒体用户提供了卓越的美颜效果和互动体验。 一、什么是视频直播美颜sdk&#xff1f; 在深入讨论如何将视频直播美颜sdk整合到社交媒体平…

CSS元素浮动

概述 浮动简介 在最初&#xff0c;浮动是用来实现文字环绕图片效果的&#xff0c;现在浮动是主流的页面布局方式之一。 元素浮动后的特点 脱离文档流。不管浮动前是什么元素&#xff0c;浮动后&#xff0c;默认宽与高都是被内容撑开的&#xff08;尽可能小&#xff09;&am…

时序分解 | MATLAB实现基于小波分解信号分解分量可视化

时序分解 | MATLAB实现基于小波分解信号分解分量可视化 目录 时序分解 | MATLAB实现基于小波分解信号分解分量可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于小波分解的分量可视化&#xff0c;MATLAB编程程序&#xff0c;用于将信号分解成不同尺度和频率的子信…

实用技巧:Linux上实现OpenGauss数据库远程连接,方便的跨网络数据操作

文章目录 前言1. Linux 安装 openGauss2. Linux 安装cpolar3. 创建openGauss主节点端口号公网地址4. 远程连接openGauss5. 固定连接TCP公网地址6. 固定地址连接测试 &#x1f341; 小结 &#x1f341; 前言 openGauss是一款开源关系型数据库管理系统&#xff0c;采用木兰宽松许…

Spring-MVC使用JSR303及拦截器,增强网络隐私安全

目录 一、JSR303 ( 1 ) 是什么 ( 2 ) 作用 ( 3 ) 常用注解 ( 4 ) 入门使用 二、拦截器 2.1 是什么 2.2 拦截器与过滤器的区别 2.3 应用场景 2.4 基础使用 2.5 用户登录权限控制 给我们带来的收获 一、JSR303 ( 1 ) 是什么 JSR 303是Java规范请求&#xff…

进程间通信——共享内存

目录 共享内存的原理 共享内存通信的实现步骤 通信实例 共享内存的原理 原理&#xff1a;可以说&#xff0c;共享内存是一种最为高效的进程间通信方式。因为进程可以直接读写内存&#xff0c;不需要任何数据的复制。为了在多个进程间交换信息&#xff0c;内核专门留出一块内…

C语言 —— 初步入门知识(第一个C语言程序、数据类型、变量常量、字符与注释)

本篇文章介绍C语言的基础知识&#xff0c;使读者对C语言能够有一个大概的认识. 不会细写每一个知识点, 但是能够入门C语言, 进行初步的C语言代码阅读. 首先, 什么是语言? 对于人和人之间进行交流的语言, 我们知道, 可以通过汉语, 英语, 日语等语言进行交流. 那么对于人和计算…

计算机网络:三次握手与四次挥手

摘取作者&#xff1a;拓跋阿秀 三次握手 三次握手&#xff08;Three-way Handshake&#xff09;其实就是指建立一个TCP连接时&#xff0c;需要客户端和服务器总共发送3个包。进行三次握手的主要作用就是为了确认双方的接收能力和发送能力是否正常、指定自己的初始化序列号为后…

SpringMVC系列(四)之SpringMVC实现文件上传和下载

目录 前言 一. SpringMVC文件上传 1. 配置多功能视图解析器 2. 前端代码中&#xff0c;将表单标记为多功能表单 3. 后端利用MultipartFile 接口&#xff0c;接收前端传递到后台的文件 4. 文件上传示例 1. 相关依赖&#xff1a; 2. 逆向生成对应的类 3. 后端代码&#xf…

(10)(10.9) 术语表(一)

文章目录 前言 1 2.4Ghz 2 AGL 3 AHRS 4 APM 5 AMA 6 Arduino 7 APM (AutoPilot Mega) 8 ATC 9 Copter 10 Plane 11 Rover 12 BEC 13 Bootloader 14 COA 15 DCM 16 Eagle file 17 ESC 18 Firmware 19 FPV 20 FTDI 前言 &#xff01;Note 术语表未编入索…

微信小程序学习笔记1.0

第1章 微信小程序基础 1.1 微信小程序介绍 1.1.1 什么是微信小程序 微信小程序的特点&#xff1a; ① 微信小程序是不需要下载和安装的&#xff1b; ② 它可以完成App应用软件的交互功能&#xff1b; ③ 用户扫一扫或者搜一下就可以使用小程序&#xff1b; ④ 微信小程序…

Python模板注入(SSTI)

概念 发生在使用模板引擎解析用户提供的输入时。模板注入漏洞可能导致攻击者能够执行恶意代码或访问未授权的数据。 模板引擎可以让&#xff08;网站&#xff09;程序实现界面与数据分离&#xff0c;业务代码与逻辑代码分离。即也拓宽了攻击面&#xff0c;注入到模板中的代码可…

数据库逻辑透明-架构真题(二十九)

&#xff08;2020年&#xff09;假设某计算机字长为32位&#xff0c;该计算机文件管理系统磁盘空间管理采用位示图&#xff08;bitmap&#xff09;记录磁盘的使用情况。若磁盘的容量为300GB&#xff0c;物理块大小为4MB&#xff0c;那么位示图的大小为&#xff08;&#xff09;…

海外媒体发稿:海外汽车媒体推广9个方式解析

根据下列9个国外汽车媒体推广方式&#xff0c;企业能够在国际范围内突破边界&#xff0c;获得领域关心。这将帮助企业完成国际化发展发展战略&#xff0c;扩展市场占有率和提升盈利空间。【华媒舍】国外全媒体发表文章将会成为企业完成这一目标的重要方式&#xff0c;为企业带来…

Java中的异常基础知识

目录 什么是异常? 1.算术异常 2.数组越界异常 3.空指针异常 4.输入不匹配异常 Java异常体系 异常的处理 防御式编程: 事后认错 异常处理流程 自定义异常 什么是异常? 在Java中,将程序执行过程中发生的不正常行为称为异常 1.算术异常 public static void main(St…

GDB之保存已经设置的断点(十六)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

postgresql-窗口函数种类

postgresql-聚合窗口函数 聚合函数排名窗口函数案例1案例2 取值窗口函数环比增长率同比增长率 聚合函数 常用的聚合函数&#xff0c;例如 AVG、SUM、COUNT 等&#xff0c;也可以作为窗口函数使用 --计算移动平均值 select saledate, amount, avg(amount) over (order by sale…

【用unity实现100个游戏之10】复刻经典俄罗斯方块游戏

文章目录 前言开始项目网格生成Block方块脚本俄罗斯方块基类&#xff0c;绘制方块形状移动逻辑限制移动自由下落下落后设置对应风格为不可移动类型检查当前方块是否可以向指定方向移动旋转逻辑消除逻辑游戏结束逻辑怪物生成源码参考完结 前言 当今游戏产业中&#xff0c;经典游…