Java并发编程基础面试题详细总结

1. 什么是线程和进程?

1.1  何为进程?

        进程是程序的一次执行过程,是系统运行程序的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。

        在 Java 中,当我们启动 main 函数时其实就是启动了一个 JVM 的进程,而 main 函数所在的线程就是这个进程中的一个线程,也称主线程。

        如下图所示,在 windows 中通过查看任务管理器的方式,我们就可以清楚看到 window 当前运行的进程(.exe 文件的运行)。

1.2 何为线程?

        线程与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中可以产生多个线程。与进程不同的是同类的多个线程共享进程的方法区资源,但每个线程有自己的程序计数器虚拟机栈本地方法栈,所以系统在产生一个线程,或是在各个线程之间作切换工作时,负担要比进程小得多,也正因为如此,线程也被称为轻量级进程。

Java 程序天生就是多线程程序,我们可以通过 JMX 来看一下一个普通的 Java 程序有哪些线程,代码如下。

public class MultiThread {public static void main(String[] args) {// 获取 Java 线程管理 MXBeanThreadMXBean threadMXBean = ManagementFactory.getThreadMXBean();// 不需要获取同步的 monitor 和 synchronizer 信息,仅获取线程和线程堆栈信息ThreadInfo[] threadInfos = threadMXBean.dumpAllThreads(false, false);// 遍历线程信息,仅打印线程 ID 和线程名称信息for (ThreadInfo threadInfo : threadInfos) {System.out.println("[" + threadInfo.getThreadId() + "] " + threadInfo.getThreadName());}}
}

上述程序输出如下(输出内容可能不同,不用太纠结下面每个线程的作用,只用知道 main 线程执行 main 方法即可):

[5] Attach Listener //添加事件
[4] Signal Dispatcher // 分发处理给 JVM 信号的线程
[3] Finalizer //调用对象 finalize 方法的线程
[2] Reference Handler //清除 reference 线程
[1] main //main 线程,程序入口

从上面的输出内容可以看出:一个 Java 程序的运行是 main 线程和多个其他线程同时运行

2. 请简要描述线程与进程的关系,区别及优缺点?

2.1 图解进程和线程的关系

        下图是 Java 内存区域,通过下图我们从 JVM 的角度来说一下线程和进程之间的关系。

        从上图可以看出:一个进程中可以有多个线程,多个线程共享进程的方法区 (JDK1.8 之后的元空间)资源,但是每个线程有自己的程序计数器虚拟机栈本地方法栈

        总结: 线程是进程划分成的更小的运行单位。线程和进程最大的不同在于基本上各进程是独立的,而各线程则不一定,因为同一进程中的线程极有可能会相互影响。线程执行开销小,但不利于资源的管理和保护;而进程正相反。

2.2 程序计数器为什么是私有的?

程序计数器主要有下面两个作用:

  1. 字节码解释器通过改变程序计数器来依次读取指令,从而实现代码的流程控制,如:顺序执行、选择、循环、异常处理。

  2. 在多线程的情况下,程序计数器用于记录当前线程执行的位置,从而当线程被切换回来的时候能够知道该线程上次运行到哪儿了。

需要注意的是,如果执行的是 native 方法,那么程序计数器记录的是 undefined 地址,只有执行的是 Java 代码时程序计数器记录的才是下一条指令的地址。

所以,程序计数器私有主要是为了线程切换后能恢复到正确的执行位置

3. 说说并发与并行的区别?

  • 并发: 同一时间段,多个任务都在执行 (单位时间内不一定同时执行);

  • 并行: 单位时间内,多个任务同时执行。

4. 为什么要使用多线程呢?

先从总体上来说:

  • 从计算机底层来说: 线程可以比作是轻量级的进程,是程序执行的最小单位,线程间的切换和调度的成本远远小于进程。另外,多核 CPU 时代意味着多个线程可以同时运行,这减少了线程上下文切换的开销。

  • 从当代互联网发展趋势来说: 现在的系统动不动就要求百万级甚至千万级的并发量,而多线程并发编程正是开发高并发系统的基础,利用好多线程机制可以大大提高系统整体的并发能力以及性能。

再深入到计算机底层来探讨:

  • 单核时代: 在单核时代多线程主要是为了提高 CPU 和 IO 设备的综合利用率。举个例子:当只有一个线程的时候会导致 CPU 计算时,IO 设备空闲;进行 IO 操作时,CPU 空闲。我们可以简单地说这两者的利用率目前都是 50%左右。但是当有两个线程的时候就不一样了,当一个线程执行 CPU 计算时,另外一个线程可以进行 IO 操作,这样两个的利用率就可以在理想情况下达到 100%了。

  • 多核时代: 多核时代多线程主要是为了提高 CPU 利用率。举个例子:假如我们要计算一个复杂的任务,我们只用一个线程的话,CPU 只会一个 CPU 核心被利用到,而创建多个线程就可以让多个 CPU 核心被利用到,这样就提高了 CPU 的利用率。

5. 使用多线程可能带来什么问题?

并发编程的目的就是为了能提高程序的执行效率提高程序运行速度,但是并发编程并不总是能提高程序运行速度的,而且并发编程可能会遇到很多问题,比如:内存泄漏、死锁、线程不安全等等。

6. 说说线程的生命周期和状态?

         线程在生命周期中并不是固定处于某一个状态而是随着代码的执行在不同状态之间切换。Java 线程状态变迁如下图所示

         由上图可以看出:线程创建之后它将处于 NEW(新建) 状态,调用 start() 方法后开始运行,线程这时候处于 READY(可运行) 状态。可运行状态的线程获得了 CPU 时间片(timeslice)后就处于 RUNNING(运行) 状态。

        当线程执行 wait()方法之后,线程进入 WAITING(等待) 状态。进入等待状态的线程需要依靠其他线程的通知才能够返回到运行状态,而 TIME_WAITING(超时等待) 状态相当于在等待状态的基础上增加了超时限制,比如通过 sleep(long millis)方法或 wait(long millis)方法可以将 Java 线程置于 TIMED WAITING 状态。当超时时间到达后 Java 线程将会返回到 RUNNABLE 状态。当线程调用同步方法时,在没有获取到锁的情况下,线程将会进入到 BLOCKED(阻塞) 状态。线程在执行 Runnable 的run()方法之后将会进入到 TERMINATED(终止) 状态。

7. 什么是上下文切换?

        多线程编程中一般线程的个数都大于 CPU 核心的个数,而一个 CPU 核心在任意时刻只能被一个线程使用,为了让这些线程都能得到有效执行,CPU 采取的策略是为每个线程分配时间片并轮转的形式。当一个线程的时间片用完的时候就会重新处于就绪状态让给其他线程使用,这个过程就属于一次上下文切换。

        概括来说就是:当前任务在执行完 CPU 时间片切换到另一个任务之前会先保存自己的状态,以便下次再切换回这个任务时,可以再加载这个任务的状态。任务从保存到再加载的过程就是一次上下文切换

        上下文切换通常是计算密集型的。也就是说,它需要相当可观的处理器时间,在每秒几十上百次的切换中,每次切换都需要纳秒量级的时间。所以,上下文切换对系统来说意味着消耗大量的 CPU 时间,事实上,可能是操作系统中时间消耗最大的操作。

        Linux 相比与其他操作系统(包括其他类 Unix 系统)有很多的优点,其中有一项就是,其上下文切换和模式切换的时间消耗非常少。

8. 什么是线程死锁?如何避免死锁?

8.1 认识线程死锁

        线程死锁描述的是这样一种情况:多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。

        如下图所示,线程 A 持有资源 2,线程 B 持有资源 1,他们同时都想申请对方的资源,所以这两个线程就会互相等待而进入死锁状态。

下面通过一个例子来说明线程死锁

public class DeadLockDemo {private static Object resource1 = new Object();//资源 1private static Object resource2 = new Object();//资源 2public static void main(String[] args) {new Thread(() -> {synchronized (resource1) {System.out.println(Thread.currentThread() + "get resource1");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread() + "waiting get resource2");synchronized (resource2) {System.out.println(Thread.currentThread() + "get resource2");}}}, "线程 1").start();new Thread(() -> {synchronized (resource2) {System.out.println(Thread.currentThread() + "get resource2");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread() + "waiting get resource1");synchronized (resource1) {System.out.println(Thread.currentThread() + "get resource1");}}}, "线程 2").start();}
}

输出:

Thread[线程 1,5,main]get resource1
Thread[线程 2,5,main]get resource2
Thread[线程 1,5,main]waiting get resource2
Thread[线程 2,5,main]waiting get resource1

线程 A 通过 synchronized (resource1) 获得 resource1 的监视器锁,然后通过Thread.sleep(1000);让线程 A 休眠 1s 为的是让线程 B 得到执行然后获取到 resource2 的监视器锁。线程 A 和线程 B 休眠结束了都开始企图请求获取对方的资源,然后这两个线程就会陷入互相等待的状态,这也就产生了死锁。上面的例子符合产生死锁的四个必要条件。

产生死锁必须具备以下四个条件:

  1. 互斥条件:该资源任意一个时刻只由一个线程占用。

  2. 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。

  3. 不剥夺条件:线程已获得的资源在未使用完之前不能被其他线程强行剥夺,只有自己使用完毕后才释放资源。

  4. 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。

8.2 如何避免线程死锁?

我上面说了产生死锁的四个必要条件,为了避免死锁,我们只要破坏产生死锁的四个条件中的其中一个就可以了。现在我们来挨个分析一下:

  1. 破坏互斥条件 :这个条件我们没有办法破坏,因为我们用锁本来就是想让他们互斥的(临界资源需要互斥访问)。

  2. 破坏请求与保持条件 :一次性申请所有的资源。

  3. 破坏不剥夺条件 :占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源。

  4. 破坏循环等待条件 :靠按序申请资源来预防。按某一顺序申请资源,释放资源则反序释放。破坏循环等待条件。

我们对线程 2 的代码修改成下面这样就不会产生死锁了。

        new Thread(() -> {synchronized (resource1) {System.out.println(Thread.currentThread() + "get resource1");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread() + "waiting get resource2");synchronized (resource2) {System.out.println(Thread.currentThread() + "get resource2");}}}, "线程 2").start();

输出:

Thread[线程 1,5,main]get resource1
Thread[线程 1,5,main]waiting get resource2
Thread[线程 1,5,main]get resource2
Thread[线程 2,5,main]get resource1
Thread[线程 2,5,main]waiting get resource2
Thread[线程 2,5,main]get resource2Process finished with exit code 0

我们分析一下上面的代码为什么避免了死锁的发生?

线程 1 首先获得到 resource1 的监视器锁,这时候线程 2 就获取不到了。然后线程 1 再去获取 resource2 的监视器锁,可以获取到。然后线程 1 释放了对 resource1、resource2 的监视器锁的占用,线程 2 获取到就可以执行了。这样就破坏了破坏循环等待条件,因此避免了死锁。

9. 说说 sleep() 方法和 wait() 方法区别和共同点?

  • 两者最主要的区别在于:sleep() 方法没有释放锁,而 wait() 方法释放了锁

  • 两者都可以暂停线程的执行。

  • wait() 通常被用于线程间交互/通信,sleep()通常被用于暂停执行。

  • wait() 方法被调用后,线程不会自动苏醒,需要别的线程调用同一个对象上的 notify()或者 notifyAll() 方法。sleep()方法执行完成后,线程会自动苏醒。或者可以使用 wait(long timeout) 超时后线程会自动苏醒。

10. 为什么我们调用 start() 方法时会执行 run() 方法,为什么我们不能直接调用 run() 方法?

        new 一个 Thread,线程进入了新建状态。调用 start()方法,会启动一个线程并使线程进入了就绪状态,当分配到时间片后就可以开始运行了。 start() 会执行线程的相应准备工作,然后自动执行 run() 方法的内容,这是真正的多线程工作。 但是,直接执行 run() 方法,会把 run() 方法当成一个 main 线程下的普通方法去执行,并不会在某个线程中执行它,所以这并不是多线程工作。

        总结: 调用 start() 方法方可启动线程并使线程进入就绪状态,直接执行 run() 方法的话不会以多线程的方式执行。

        

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/791158.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows进程监视器Process Monitor

文章目录 Process Monitor操作逻辑 Process Monitor Process Monitor是 Windows 的高级监视工具,是Filemon Regmon的整合增强版本,实时显示文件系统,注册表,网络活动,进程或线程活动,资料收集事件&#x…

阿里云弹性计算通用算力型u1实例性能评测,性价比高

阿里云服务器u1是通用算力型云服务器,CPU采用2.5 GHz主频的Intel(R) Xeon(R) Platinum处理器,ECS通用算力型u1云服务器不适用于游戏和高频交易等需要极致性能的应用场景及对业务性能一致性有强诉求的应用场景(比如业务HA场景主备机需要性能一致)&#xf…

记录一次threejs内存泄露问题排查过程

问题描述: 一个有关地图编辑的使用threejs的这样的组件,在多次挂载销毁后,页面开始卡顿。 问题排查: 1. 首先在chrome dev tool中打开performance monitor面板,观察 JS head size、DOME Nodes、Js event listeners数…

【C++】C++11类的新功能

👀樊梓慕:个人主页 🎥个人专栏:《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 🌝每一个不曾起舞的日子,都是对生命的辜负 目录 前言 默认成员函数 类成…

Java基于微信小程序高校体育场管理小程序

博主介绍:✌IT徐师兄、7年大厂程序员经历。全网粉丝15W、csdn博客专家、掘金/华为云//InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇&#x1f3…

跨域问题解决方案之CORS

跨域问题解决方案之CORS 文章目录 跨域问题解决方案之CORS概述浏览器的同源策略同源的判定规则目的同源策略的限制范围 浏览器的同源策略为什么会引发跨域问题?CORS规则CORS解决方案CORS方案将请求分为两类举例简单请求预检请求总结学以致用 概述 浏览器安全的基石…

esp32控制舵机---待完善

舵机有三个引脚,分别是电源、电源GND和信号线。如下图所示: ESP32-WROOM-32E的引脚的定义如下: 图来自乐鑫官网:ESP32-DevKitC V4 入门指南 - ESP32 - — ESP-IDF 编程指南 v5.2.1 文档 硬件连接图: 待补充

Failed to resolve import “Home/components/HomeNew.vue“. Does the file exist?

错误信息 [plugin:vite:import-analysis] Failed to resolve import "/apis/home.js" from "src/views/Home/components/HomeNew.vue". Does the file exist? 错误原因 路径错误 解决方法

面试复盘1 - 测试相关(实习)

写在前:hello,大家早中晚上好~这里是西西,最近有在准备测试相关的面试,特此开设了新的篇章,针对于面试中的问题来做一下复盘,会把我自己遇到的问题进行整理,除此之外还会进行对一些常见面试题的…

蓝桥杯算法题:区间移位

题目描述 数轴上有n个闭区间&#xff1a;D1,...,Dn。 其中区间Di用一对整数[ai, bi]来描述&#xff0c;满足ai < bi。 已知这些区间的长度之和至少有10000。 所以&#xff0c;通过适当的移动这些区间&#xff0c;你总可以使得他们的“并”覆盖[0, 10000]——也就是说[0, 100…

动态规划详解(Dynamic Programming)

目录 引入什么是动态规划&#xff1f;动态规划的特点解题办法解题套路框架举例说明斐波那契数列题目描述解题思路方式一&#xff1a;暴力求解思考 方式二&#xff1a;带备忘录的递归解法方式三&#xff1a;动态规划 推荐练手题目 引入 动态规划问题&#xff08;Dynamic Progra…

【并发编程系列】使用 CompletableFuture 实现并发任务处理

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

Autodesk AutoCAD 2025 (macOS, Windows) - 自动计算机辅助设计软件

Autodesk AutoCAD 2025 (macOS, Windows) - 自动计算机辅助设计软件 AutoCAD 2024 开始原生支持 Apple Silicon&#xff0c;性能提升至 2 倍 请访问原文链接&#xff1a;https://sysin.org/blog/autodesk-autocad/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处…

Golang | Leetcode Golang题解之第8题字符串转换整数atoi

题目&#xff1a; 题解&#xff1a; func myAtoi(s string) int {abs, sign, i, n : 0, 1, 0, len(s)//丢弃无用的前导空格for i < n && s[i] {i}//标记正负号if i < n {if s[i] - {sign -1i} else if s[i] {sign 1i}}for i < n && s[i] >…

Spark-Scala语言实战(9)

之前的文章中&#xff0c;我们学习了如何在spark中使用RDD方法的flatMap,take,union。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢。 Spark-Scala语言实战&am…

【ESP32S3 Sense接入语音识别+MiniMax模型+TTS模块语音播报】

【ESP32S3 Sense接入语音识别MiniMax模型TTS模块语音播报】 1. 前言2. 功能模块概述2.1 语音接入2.2 大模型接入2.3 TTS模块接入 3. 先决条件3.1 环境配置3.2 所需零件3.3 硬件连接步骤 4. 核心代码4.1 源码分享4.2 代码解析 5. 上传验证5.1 对话测试5.2 报错 6. 总结 1. 前言 …

C语言杂谈

努力扩大自己&#xff0c;以靠近&#xff0c;以触及自身以外的世界 文章目录 什么是定义&#xff1f;什么是声明&#xff1f;什么是赋值&#xff1f;什么是初始化&#xff1f;什么是生命周期&#xff1f;什么是作用域&#xff1f;全局变量&#xff1f;局部变量&#xff1f;size…

HCIA-RS基础-VLAN路由

目录 VLAN 路由1. 什么是 VLAN 路由2. VLAN 路由的原理及配置3. VLAN 的缺点和 VLAN Trunking4. 单臂路由配置 总结 VLAN 路由 1. 什么是 VLAN 路由 VLAN 路由是指在虚拟局域网&#xff08;VLAN&#xff09;之间进行路由转发的过程。传统的 VLAN 配置只能在同一个 VLAN 内进行…

LCD1602显示屏

LCD1602显示 概述 LCD1602&#xff08;Liquid Crystal Display&#xff09;是一种工业字符型液晶&#xff0c;能够同时显示 1602 即 32 字符(16列两行) 引脚说明 //电源 VSS -- GND VDD -- 5V //对比度 VO -- GND //控制线 RS -- P1.0 RW -- P1.1 E -- P1.4 //背光灯 A -- 5…

在ChatGPT中,能用DALL·E 3编辑图片啦!

4月3日&#xff0c;OpenAI开始向部分用户&#xff0c;提供在ChatGPT中的DALLE 3图片编辑功能。 DALLE 3是OpenAI在2023年9月20日发布的一款文生图模型&#xff0c;其生成的图片效果可以与Midjourney、leonardo、ideogram等顶级产品媲美&#xff0c;随后被融合到ChatGPT中增强其…