正式开始背包问题,背包问题还是挺难的,虽然大家可能看了很多背包问题模板代码,感觉挺简单,但基本理解的都不够深入。
如果是直接从来没听过背包问题,可以先看文字讲解慢慢了解 这是干什么的。
如果做过背包类问题,可以先看视频,很多内容,是自己平时没有考虑到位的。
背包问题,力扣上没有原题,大家先了解理论,今天就安排一道具体题目。
01背包问题 二维
https://programmercarl.com/%E8%83%8C%E5%8C%85%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%8001%E8%83%8C%E5%8C%85-1.html
视频讲解:https://www.bilibili.com/video/BV1cg411g7Y6
题目大意:有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
#include <bits/stdc++.h>
using namespace std;int n, bagweight;// bagweight代表行李箱空间
void solve() {vector<int> weight(n, 0); // 存储每件物品所占空间vector<int> value(n, 0); // 存储每件物品价值for(int i = 0; i < n; ++i) {cin >> weight[i];}for(int j = 0; j < n; ++j) {cin >> value[j];}// dp数组, dp[i][j]代表行李箱空间为j的情况下,从下标为[0, i]的物品里面任意取,能达到的最大价值vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));// 初始化, 因为需要用到dp[i - 1]的值// j < weight[0]已在上方被初始化为0// j >= weight[0]的值就初始化为value[0]for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];}for(int i = 1; i < weight.size(); i++) { // 遍历科研物品for(int j = 0; j <= bagweight; j++) { // 遍历行李箱容量// 如果装不下这个物品,那么就继承dp[i - 1][j]的值if (j < weight[i]) dp[i][j] = dp[i - 1][j];// 如果能装下,就将值更新为 不装这个物品的最大值 和 装这个物品的最大值 中的 最大值// 装这个物品的最大值由容量为j - weight[i]的包任意放入序号为[0, i - 1]的最大值 + 该物品的价值构成else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}}cout << dp[weight.size() - 1][bagweight] << endl;
}int main() {while(cin >> n >> bagweight) {solve();}return 0;
}
01背包问题 一维
https://programmercarl.com/%E8%83%8C%E5%8C%85%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%8001%E8%83%8C%E5%8C%85-2.html
视频讲解:https://www.bilibili.com/video/BV1BU4y177kY
题目大意:滚动数组,就是把二维dp降为一维dp。
#include <iostream>
#include <vector>
using namespace std;int main() {// 读取 M 和 Nint M, N;cin >> M >> N;vector<int> costs(M);vector<int> values(M);for (int i = 0; i < M; i++) {cin >> costs[i];}for (int j = 0; j < M; j++) {cin >> values[j];}// 创建一个动态规划数组dp,初始值为0vector<int> dp(N + 1, 0);// 外层循环遍历每个类型的研究材料for (int i = 0; i < M; ++i) {// 内层循环从 N 空间逐渐减少到当前研究材料所占空间for (int j = N; j >= costs[i]; --j) {// 考虑当前研究材料选择和不选择的情况,选择最大值dp[j] = max(dp[j], dp[j - costs[i]] + values[i]);}}// 输出dp[N],即在给定 N 行李空间可以携带的研究材料最大价值cout << dp[N] << endl;return 0;
}
可以看出,一维dp 的01背包,要比二维简洁的多! 初始化 和 遍历顺序相对简单了。
所以我倾向于使用一维dp数组的写法,比较直观简洁,而且空间复杂度还降了一个数量级。
416. 分割等和子集
本题是 01背包的应用类题目
https://programmercarl.com/0416.%E5%88%86%E5%89%B2%E7%AD%89%E5%92%8C%E5%AD%90%E9%9B%86.html
视频讲解:https://www.bilibili.com/video/BV1rt4y1N7jE
题目大意:给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200
class Solution {
public:bool canPartition(vector<int>& nums) {int sum = 0;// dp[i]中的i表示背包内总和// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了vector<int> dp(10001, 0);for (int i = 0; i < nums.size(); i++) {sum += nums[i];}// 也可以使用库函数一步求和// int sum = accumulate(nums.begin(), nums.end(), 0);if (sum % 2 == 1) return false;int target = sum / 2;// 开始 01背包for(int i = 0; i < nums.size(); i++) {for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);}}// 集合中的元素正好可以凑成总和targetif (dp[target] == target) return true;return false;}
};
时间复杂度:O(n^2)
空间复杂度:O(n),虽然dp数组大小为一个常数,但是大常数