区间概率预测python|QR-CNN-BiLSTM+KDE分位数-卷积-双向长短期记忆神经网络-时间序列区间概率预测+核密度估计

区间预测python|QR-CNN-BiLSTM+KDE分位数-卷积-双向长短期记忆神经网络-核密度估计-回归时间序列区间预测

模型输出展示:

(图中是只设置了20次迭代的预测结果,宽度较宽,可自行修改迭代参数,获取更窄的预测区间)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注:可输出所有时间点的概率预测结果,数量较多,程序中为了随机采样了部分时间点绘制了预测结果

模型详细介绍:

模型详细介绍如下:
1、	输入:多变量(多特征),输出:单变量(单特征),即多变量回归
2、	实现了:区间预测(采用分位数回归)+概率预测(采用核密度估计)
3、	绘图:区间预测结果+多个概率预测结果
4、	评价指标为:85%90%95%三个置信水平下的PICP、PINAW及CRPS值
5、	本程序采用数据为:光伏数据(包含辐照度、温度等多个变量),数据为附赠
6、	Python程序,基于tensorflow(会发包版本)
7、	数据可直接读取excel文件,更换简单,只保证在我的数据上能运行出较为理想结果(若需更好的结果自行调试),其他数据集效果自己调试。
8、程序中包含数据预处理部分,包含缺失值处理、归一化与反归一化等
9、本程序分位数个数设置为200个,这个可以自行调整。

模型用途:

1、	光伏预测
2、	负荷预测
3、	风电预测等

模型原理介绍:

QR-CNN-BiLSTM模型是一个结合了Quantile Regression (QR),卷积神经网络 (CNN) 和双向长短期记忆网络 (BiLSTM) 的混合模型,它可以用于进行区间预测。区间预测不同于点预测,它提供了一个预测区间来表示未来值的不确定性,而不是给出一个具体的数值。这种模型特别适用于时间序列数据,可以捕捉数据的时间依赖性和非线性特征。除此之外,模型采用了核密度估计实现了概率预测。

模型实现流程:

1、数据预处理:

数据标准化:将时间序列数据标准化,以便模型更容易学习。
序列化:将时间序列数据转换为可供模型学习的序列样本。
缺失值填补:补充缺失值
2、 构建模型:
Quantile Regression
(QR):分位数回归用于估计条件分位数函数。在区间预测中,我们通常对特定的分位数(如5%和95%)感兴趣,这样可以构建一个90%的预测区间。
卷积神经网络 (CNN):CNN可以从序列数据中提取局部特征。在时间序列分析中,卷积层可以帮助模型捕捉到短期的趋势和模式。
在这里插入图片描述在这里插入图片描述
双向长短期记忆网络
(BiLSTM):BiLSTM是一种特殊的RNN,它能够学习长期依赖关系。BiLSTM通过两个方向的LSTM层来处理数据,一个处理正向序列,另一个处理反向序列。这样可以同时捕捉到过去和未来的信息。
在这里插入图片描述
3、训练模型:
定义损失函数:在QR中,损失函数是基于分位数的,这意味着不同的分位数会有不同的损失函数。
优化器选择:选择一个适合的优化器,如Adam,来最小化损失函数。
训练过程:使用训练数据来训练模型,通过反向传播算法来更新模型的权重。
4、预测、评估:
使用训练好的模型进行预测,对于每个预测点,模型会输出多个分位数的预测值,形成预测区间。
还会使用核密度估计实现概率密度预测
评估模型的性能,可以通过计算预测区间覆盖实际值的比例、区间宽度等指标来进行。
5、超参数调整:
根据模型的性能,可能需要调整模型的超参数,如学习率、批大小、隐藏层的单元数等,以获得更好的预测效果。

程序源码(完整程序和数据,请私信博主获取,也可闲鱼搜索:阿鹿学术2,直接下单):

私信未及时回复可添加k—o—u—k–o—u:1493502034

def create_cnn_bilstm_model(input_shape, cnn_filters, cnn_kernel_size, cnn_activation, max_pool_size,lstm_units, dropout_rate, dense_units, dense_activation1, dense_activation2, learning_rate):model = Sequential()model.add(MaxPooling1D(pool_size=max_pool_size,padding='same'))model.add(Dense(units=dense_units, activation=dense_activation1))model.add(Dropout(dropout_rate))……optimizer = Adam(learning_rate=learning_rate)model.compile(optimizer=optimizer, loss=loss)return model

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/790489.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

类似微信的以文搜图功能实现

通过PaddleOCR识别图片中的文字,将识别结果报存到es中,利用es查询语句返回结果图片。 技术逻辑 PaddleOCR部署、es部署创建mapping将PaddleOCR识别结果保存至es通过查询,返回结果 前期准备 PaddleOCR、es部署请参考https://blog.csdn.net…

stm32之基本定时器的使用

在上文我们使用到了HAL库的自带的延时函数,HAL_Delay();我们来看一下函数的原型 __weak void HAL_Delay(uint32_t Delay) {uint32_t tickstart HAL_GetTick();uint32_t wait Delay;/* Add a freq to guarantee minimum wait */…

【SQL】1587. 银行账户概要 II

题目描述 leetcode题目:1587. 银行账户概要 II Code 写法一 select name, sum(amount) as balance from Users U left join Transactions T on U.account T.account group by U.account having sum(amount) > 10000写法二 select Users.name, balance from…

Unity自定义icon

Unity自定义icon 1. 新建文件夹 OfficeFabricIconSet2. 新建Iconset3. 新建子文件夹Textures并添加icon图片4. 向iconset添加Quad Icons5. 最终效果 教程来源处: https://365xr.blog/build-your-own-button-icon-set-for-microsoft-hololens-2-apps-with-mrtk-using…

前视声呐目标识别定位(三)-部署至机器人

前视声呐目标识别定位(一)-基础知识 前视声呐目标识别定位(二)-目标识别定位模块 开发了多波束前视声呐目标识别定位模块后,自然期待能将声呐部署至AUV,实现AUV对目标的抵近观测。原本规划着定位模块不…

C++算法——二分法查找

一、二分查找算法思想和模版 1.算法思想 2.细节处理 3.模板 二、二分查找 1.链接 704. 二分查找 - 力扣(LeetCode) 2.描述 3.思路 先从最经典的题目去切入,思路就是二分查找,这里我们认为,目标值既可以看作为左部…

XSS 与 CSRF 攻击——有什么区别,如何加以防护

跨站脚本(XSS)和跨站请求伪造(CSRF),它们将恶意脚本注入目标系统,以进一步利用技术栈或窃取用户数据。 什么是 XSS 和 CSRF? CSRF和XSS都是客户端攻击,它们滥用同源策略,利用web应用程序和受害用户之间的信任关系。XSS和跨站脚…

WPS二次开发系列:以自动播放模式打开PPT文档

在前面文章中 WPS SDK打开文档并实现保存回传 介绍了如何使用WPS SDK打开文档,那么我们是否能够实现在打开WPS 文档的时候能够传递一些参数来控制打开文档的行为呢,经过研究WPS SDK相关文档和API,最终实现了 以自动播放方式打开PPT文档功能。…

Spring Cloud微服务入门(二)

微服务的技术栈 服务治理: 服务注册、发现、调用。 负载均衡: 高可用、集群部署。 容错: 避免雪崩、削峰、服务降级。 消息总线: 消息队列、异步通信,数据一致性。 网关: 校验路径、请求转发、服务集成…

【Web】2024红明谷CTF初赛个人wp(2/4)

目录 ezphp playground 时间原因只打了2个小时,出了2道,简单记录一下 ezphp 参考文章 PHP filter chains: file read from error-based oracle https://github.com/synacktiv/php_filter_chains_oracle_exploit 用上面的脚本爆出部分源码&#xff…

SSM项目转Springboot项目

SSM项目转Springboot项目 由于几年前写的一个ssm项目想转成springboot项目,所以今天倒腾了一下。 最近有人需要毕业设计转换一下,所以我有时间的话可以有偿帮忙转换,需要的私信我或+v:Arousala_ 首先创建一个新的spr…

蓝桥杯第793题——排水系统

题目描述 对于一个城市来说,排水系统是极其重要的一个部分。 有一天,小 C 拿到了某座城市排水系统的设计图。排水系统由 n 个排水结点(它们从 1∼n 编号)和若干个单向排水管道构成。每一个排水结点有若干个管道用于汇集其他排水…

git分支-基本分支与合并

问题假设 让我们通过一个简单的分支和合并的例子,演示在实际工作中可能会使用的工作流程。将按照以下步骤进行: 在网站上进行一些工作。为正在开发的新用户故事创建一个分支。在该分支上进行一些工作。 在这个阶段,我们可能会接到一个电话…

线上研讨会 | 应对汽车毫米波雷达设计中的电磁挑战

智能汽车、新能源汽车最近几年一直是汽车行业关注的热点,随着5G技术越来越普及,汽车智能化发展将越来越迅速。从传统汽车到智能汽车,不是简单功能的增强,而是从单一功能的交通工具变成可移动的办公和娱乐空间,成为物联…

STM32实现软件SPI对W25Q64内存芯片实现读写操作

先看看本次实验的成果吧: 这么简单的一个程序,我学习了一个星期左右,终于把所有的关节都打通了。所有代码都能什么都不看背着敲出来了。为了使自己的记忆更为清晰,特意总结了一个思维导图,感觉自己即便是日后忘记了看一…

机器学习的15个概念

机器学习 有监督学习 有监督学习是利用训练数据集进行预测的机器学习任务。有监督学习可以分为分类和回归。回归用于预测“价格”“温度”或“距离”等连续值,而分类用于预测“是”或“否”、“垃圾邮件”或“非垃圾邮件”、“恶性”或“良性”等类别。 分类包含…

如何保护IP地址?安全匿名上网的方法

当互联网成为每个家庭的重要组成部分后,IP地址就成了你的虚拟地址。您的请求从该地址开始,然后 Internet 将消息发送回该地址。那么,您担心您的地址被泄露吗? 对于安全意识高或者某些业务需求的用户,如果您正在寻找保护…

C++ 静态库与动态库的生成和使用:基于 VS Studio 生成 newmat 矩阵库的静态库与动态库

文章目录 Part.I IntroductionChap.I 预备知识Chap.II 静态库与动态库区分 Part.II 静态库的生成与使用 (newmat)Chap.I 生成静态库Chap.II 使用静态库 Part.III 动态库的生成与使用 (newmat)Chap.I 生成动态库Chap.II 使用动态库 Part.IV 文件内容Chap.I test.cpp (静态库)Cha…

Hadoop Yarn

首先先从Yarn开始讲起,Yarn是Hadoop架构的资源管理器,可以管理mapreduce程序的资源分配和任务调度。 Yarn主要有ResourceManager、NodeManage、ApplicationMaster,Container ResourceMange负责管理全局的资源 NodeManage(NM&a…

九河云:在AWS上实现跨region VPC互联

如何跨region实现不同VPC之间的对等链接?九河云为您介绍AWS跨region连接方案。 说明:VPC-A位于弗吉尼亚region,VPC-B位于俄勒冈region 本文将在同一账户的弗吉尼亚和俄勒冈VPC中各启用一台EC2(本文已提前创建好VPC、EC2等资源&am…