区间概率预测python|QR-CNN-BiLSTM+KDE分位数-卷积-双向长短期记忆神经网络-时间序列区间概率预测+核密度估计

区间预测python|QR-CNN-BiLSTM+KDE分位数-卷积-双向长短期记忆神经网络-核密度估计-回归时间序列区间预测

模型输出展示:

(图中是只设置了20次迭代的预测结果,宽度较宽,可自行修改迭代参数,获取更窄的预测区间)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注:可输出所有时间点的概率预测结果,数量较多,程序中为了随机采样了部分时间点绘制了预测结果

模型详细介绍:

模型详细介绍如下:
1、	输入:多变量(多特征),输出:单变量(单特征),即多变量回归
2、	实现了:区间预测(采用分位数回归)+概率预测(采用核密度估计)
3、	绘图:区间预测结果+多个概率预测结果
4、	评价指标为:85%90%95%三个置信水平下的PICP、PINAW及CRPS值
5、	本程序采用数据为:光伏数据(包含辐照度、温度等多个变量),数据为附赠
6、	Python程序,基于tensorflow(会发包版本)
7、	数据可直接读取excel文件,更换简单,只保证在我的数据上能运行出较为理想结果(若需更好的结果自行调试),其他数据集效果自己调试。
8、程序中包含数据预处理部分,包含缺失值处理、归一化与反归一化等
9、本程序分位数个数设置为200个,这个可以自行调整。

模型用途:

1、	光伏预测
2、	负荷预测
3、	风电预测等

模型原理介绍:

QR-CNN-BiLSTM模型是一个结合了Quantile Regression (QR),卷积神经网络 (CNN) 和双向长短期记忆网络 (BiLSTM) 的混合模型,它可以用于进行区间预测。区间预测不同于点预测,它提供了一个预测区间来表示未来值的不确定性,而不是给出一个具体的数值。这种模型特别适用于时间序列数据,可以捕捉数据的时间依赖性和非线性特征。除此之外,模型采用了核密度估计实现了概率预测。

模型实现流程:

1、数据预处理:

数据标准化:将时间序列数据标准化,以便模型更容易学习。
序列化:将时间序列数据转换为可供模型学习的序列样本。
缺失值填补:补充缺失值
2、 构建模型:
Quantile Regression
(QR):分位数回归用于估计条件分位数函数。在区间预测中,我们通常对特定的分位数(如5%和95%)感兴趣,这样可以构建一个90%的预测区间。
卷积神经网络 (CNN):CNN可以从序列数据中提取局部特征。在时间序列分析中,卷积层可以帮助模型捕捉到短期的趋势和模式。
在这里插入图片描述在这里插入图片描述
双向长短期记忆网络
(BiLSTM):BiLSTM是一种特殊的RNN,它能够学习长期依赖关系。BiLSTM通过两个方向的LSTM层来处理数据,一个处理正向序列,另一个处理反向序列。这样可以同时捕捉到过去和未来的信息。
在这里插入图片描述
3、训练模型:
定义损失函数:在QR中,损失函数是基于分位数的,这意味着不同的分位数会有不同的损失函数。
优化器选择:选择一个适合的优化器,如Adam,来最小化损失函数。
训练过程:使用训练数据来训练模型,通过反向传播算法来更新模型的权重。
4、预测、评估:
使用训练好的模型进行预测,对于每个预测点,模型会输出多个分位数的预测值,形成预测区间。
还会使用核密度估计实现概率密度预测
评估模型的性能,可以通过计算预测区间覆盖实际值的比例、区间宽度等指标来进行。
5、超参数调整:
根据模型的性能,可能需要调整模型的超参数,如学习率、批大小、隐藏层的单元数等,以获得更好的预测效果。

程序源码(完整程序和数据,请私信博主获取,也可闲鱼搜索:阿鹿学术2,直接下单):

私信未及时回复可添加k—o—u—k–o—u:1493502034

def create_cnn_bilstm_model(input_shape, cnn_filters, cnn_kernel_size, cnn_activation, max_pool_size,lstm_units, dropout_rate, dense_units, dense_activation1, dense_activation2, learning_rate):model = Sequential()model.add(MaxPooling1D(pool_size=max_pool_size,padding='same'))model.add(Dense(units=dense_units, activation=dense_activation1))model.add(Dropout(dropout_rate))……optimizer = Adam(learning_rate=learning_rate)model.compile(optimizer=optimizer, loss=loss)return model

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/790489.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

类似微信的以文搜图功能实现

通过PaddleOCR识别图片中的文字,将识别结果报存到es中,利用es查询语句返回结果图片。 技术逻辑 PaddleOCR部署、es部署创建mapping将PaddleOCR识别结果保存至es通过查询,返回结果 前期准备 PaddleOCR、es部署请参考https://blog.csdn.net…

stm32之基本定时器的使用

在上文我们使用到了HAL库的自带的延时函数,HAL_Delay();我们来看一下函数的原型 __weak void HAL_Delay(uint32_t Delay) {uint32_t tickstart HAL_GetTick();uint32_t wait Delay;/* Add a freq to guarantee minimum wait */…

iOS object-c self关键字总结

在Objective-C中,self 关键字是一个指向当前对象的指针。它是对象自身实例的别名,通常在对象内部的方法中使用,以提供一个指向当前对象的引用。使用 self 可以帮助你访问对象的属性和方法,特别是在处理消息传递和方法调用时。 以…

【SQL】1587. 银行账户概要 II

题目描述 leetcode题目:1587. 银行账户概要 II Code 写法一 select name, sum(amount) as balance from Users U left join Transactions T on U.account T.account group by U.account having sum(amount) > 10000写法二 select Users.name, balance from…

前端大额计算,真正解决js精度丢失问题

1.解决前端大额计算导致精度丢失问题 2.从底层上解决这个问题,计算时不使用js 运行时计算。 使用rust语言来解决这个问题,因为是底层语言,不涉及到精度问题。 3.实现步骤 步骤 1: 安装工具 确保你已经安装了Rust工具链和wasm-pack&#x…

Unity自定义icon

Unity自定义icon 1. 新建文件夹 OfficeFabricIconSet2. 新建Iconset3. 新建子文件夹Textures并添加icon图片4. 向iconset添加Quad Icons5. 最终效果 教程来源处: https://365xr.blog/build-your-own-button-icon-set-for-microsoft-hololens-2-apps-with-mrtk-using…

Java RESTful API开发:搭建基于Spring Boot的轻量级API服务

引言: 在当今互联网时代,API(Application Programming Interface)已经成为了各种软件系统之间交互的重要方式。而REST(Representational State Transfer)则是一种设计风格,用于构建分布式系统中…

前视声呐目标识别定位(三)-部署至机器人

前视声呐目标识别定位(一)-基础知识 前视声呐目标识别定位(二)-目标识别定位模块 开发了多波束前视声呐目标识别定位模块后,自然期待能将声呐部署至AUV,实现AUV对目标的抵近观测。原本规划着定位模块不…

C++算法——二分法查找

一、二分查找算法思想和模版 1.算法思想 2.细节处理 3.模板 二、二分查找 1.链接 704. 二分查找 - 力扣(LeetCode) 2.描述 3.思路 先从最经典的题目去切入,思路就是二分查找,这里我们认为,目标值既可以看作为左部…

ES6参数默认值

1.参数是按顺序传递的,参数的默认值可以赋给任意位置的参数,给参数传undefined,参数才会使用默认值,例子如下: function foo(a, b 2, c 3) {console.log(a, b, c); } foo() //undefined 2 3 foo(1, null, undefined…

XSS 与 CSRF 攻击——有什么区别,如何加以防护

跨站脚本(XSS)和跨站请求伪造(CSRF),它们将恶意脚本注入目标系统,以进一步利用技术栈或窃取用户数据。 什么是 XSS 和 CSRF? CSRF和XSS都是客户端攻击,它们滥用同源策略,利用web应用程序和受害用户之间的信任关系。XSS和跨站脚…

WPS二次开发系列:以自动播放模式打开PPT文档

在前面文章中 WPS SDK打开文档并实现保存回传 介绍了如何使用WPS SDK打开文档,那么我们是否能够实现在打开WPS 文档的时候能够传递一些参数来控制打开文档的行为呢,经过研究WPS SDK相关文档和API,最终实现了 以自动播放方式打开PPT文档功能。…

【RAG】内部外挂知识库搭建-本地GPT

大半年的项目告一段落了,现在自己找找感兴趣的东西学习下,看看可不可以搞出个效果不错的local GPT,自研下大模型吧 RAG是什么? 检索增强生成(RAG)是指对大型语言模型输出进行优化,使其能够在生成响应之前引用训练数据来…

Springboot集成token认证

一、引出session问题以及token、鉴权 session都是保存在内存中,认证用户增多,服务端开销明显增大。若是认证的记录保存在某台服务器内存中时,意味着用户的下次请求只能够在该服务器内存中进行认证。CSRF跨站攻击 token的鉴权机制&#xff1…

mysql--sql常用语句

通过profile命令来查看当前最主要的耗费时间的步骤。 mysql> select count(1) from t1; ---------- | count(1) | ---------- | 1 | ---------- 1 row in set (0.11 sec)mysql> show profiles; ----------------------------------------------- | Query_ID | Du…

Spring Cloud微服务入门(二)

微服务的技术栈 服务治理: 服务注册、发现、调用。 负载均衡: 高可用、集群部署。 容错: 避免雪崩、削峰、服务降级。 消息总线: 消息队列、异步通信,数据一致性。 网关: 校验路径、请求转发、服务集成…

Git 常用命令集

Git 常用命令集 符号说明&#xff1a; 尖括号&#xff08;< >&#xff09;表示需要替换成尖括号内文字描述的内容 方括号&#xff08;[ ]&#xff09;表示可选项 远程库名&#xff0c;形如 git.com 路径名&#xff0c;形如 D:\YouthGit\GitTest 或者 GitTest 1.初始化操…

【Web】2024红明谷CTF初赛个人wp(2/4)

目录 ezphp playground 时间原因只打了2个小时&#xff0c;出了2道&#xff0c;简单记录一下 ezphp 参考文章 PHP filter chains: file read from error-based oracle https://github.com/synacktiv/php_filter_chains_oracle_exploit 用上面的脚本爆出部分源码&#xff…

SSM项目转Springboot项目

SSM项目转Springboot项目 由于几年前写的一个ssm项目想转成springboot项目&#xff0c;所以今天倒腾了一下。 最近有人需要毕业设计转换一下&#xff0c;所以我有时间的话可以有偿帮忙转换&#xff0c;需要的私信我或&#xff0b;v&#xff1a;Arousala_ 首先创建一个新的spr…

蓝桥杯第793题——排水系统

题目描述 对于一个城市来说&#xff0c;排水系统是极其重要的一个部分。 有一天&#xff0c;小 C 拿到了某座城市排水系统的设计图。排水系统由 n 个排水结点&#xff08;它们从 1∼n 编号&#xff09;和若干个单向排水管道构成。每一个排水结点有若干个管道用于汇集其他排水…