贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据...

原文链接:http://tecdat.cn/?p=22702

贝叶斯回归分位数在最近的文献中受到广泛关注,本文实现了贝叶斯系数估计和回归分位数(RQ)中的变量选择,带有lasso和自适应lasso惩罚的贝叶斯点击文末“阅读原文”获取完整代码数据)。

摘要

还包括总结结果、绘制路径图、后验直方图、自相关图和绘制分位数图的进一步建模功能。

相关视频

简介

回归分位数(RQ)由(Koenker和Gilbert,1978)提出,将感兴趣的结果的条件分位数作为预测因子的函数来建模。自引入以来,分位数回归一直是理论界非常关注的话题,也在许多研究领域得到了大量的应用,如计量经济学、市场营销、医学、生态学和生存分析(Neelon等,2015;Davino等,2013;Hao和Naiman,2007)。假设我们有一个观察样本{(xi , yi);i = 1, 2, - -, n},其中yi表示因变量,xi表示协变量的k维矢量。

贝叶斯_分位数_回归

Tobit RQ为描述非负因变量和协变量向量之间的关系提供了一种方法,可以被表述为因变量的数据未被完全观察到的分位数回归模型。关于Tobit 分位数回归模型有相当多的文献,我们可以参考Powell(1986)、Portnoy(2003)、Portnoy和Lin(2010)以及Kozumi和Kobayashi(2011)来了解概况。考虑一下这个模型。

b723405237aaf9202abec34078c400e1.png

其中,yi是观察到的因变量,y∗i是相应的潜在的未观察到的因变量,y 0是一个已知的点。可以证明,RQ系数向量β可以通过以下最小化问题的解来持续估计
33adc4d132a9d11c1ee1182790845bd5.png

Yu和Stander(2007)提出了一种Tobit RQ的贝叶斯方法,使用ALD计算误差,并使用Metropolis-Hastings(MH)方法从其后验分布中抽取β。

真实数据实例

我们考虑用真实的数据例子。

免疫球蛋白G数据

这个数据集包括298名6个月到6岁儿童的免疫球蛋白G的血清浓度(克/升),Isaacs等人(1983)对其进行了详细讨论,Yu等人(2003)也使用了该数据集。为了说明问题,该数据集的贝叶斯分位数回归模型(可以拟合如下)。

rq(血清浓度~年龄, tau=0.5)

摘要函数提供估计值和95%的置信区间

d23ccd41ab67e13751159468ab032518.png

绘制数据,然后将五条拟合的RQ线叠加在散点图上。

R> for (i in 1:5) {
+ taus=c(0.05, 0.25, 0.5, 0.75, 0.95)
+ rq(tau=taus\[i\])
+ abline(fit, col=i)
+ }
R> 
R> for (i in 1:5) {
+ fit = rq(年龄+I(年龄^2),tau=taus\[i\])
+ curve(,add=TRUE)
+ }

4e7dabb41af4c23f46dac9bd270a4e3c.png

图2:免疫球蛋白G数据的散点图和RQ拟合。


点击标题查阅往期内容

59d953d91b5bc40ac7b091a36f338ace.jpeg

matlab使用分位数随机森林(QRF)回归树检测异常值

outside_default.png

左右滑动查看更多

outside_default.png

01

00648ea90069954413578ac334d53a97.png

02

6d547f7c18a0a1f7e4a1cbe73fea06f1.png

03

83c80da2b295388055272f41fb958ff1.png

04

ae13359233707b9223fcd4ede13c05d0.png

该图显示了298名6个月至6岁儿童的免疫球蛋白G的散点图。叠加在该图上的是{.05, .25, .50, .75, .95}的RQ线(左图)和 RQ线(左图)和RQ曲线(右图)。

图可以用来评估吉布斯采样向平稳分布的收敛情况。我们在图1中只报告了τ=0.50时每个参数的路径图和后验直方图。我们使用以下代码

plot(fit,"tracehist",D=c(1,2))

可以通过生成路径图、后验直方图、自相关图来对Gibbs采样的绘制结果进行图形总结。路径和直方图,路径和自相关,直方图和自相关,以及路径、直方图和自相关。这个函数还有一个选项。在图3中,免疫球蛋白G数据系数的路径图表明,采样从后验空间的一个偏远区域跳到另一个区域的步骤相对较少。此外,直方图显示边际密度实际上是所期望的平稳的单变量常态。

707538e2816880b4bb65e8078feea186.png

图3:当τ=0.50时,免疫球蛋白G数据集的系数的路径和密度图。

前列腺癌数据

在本小节中,我们说明贝叶斯分位数回归在前列腺癌数据集(Stamey等人,1989)上的表现。该数据集调查了等待根治性前列腺切除术的病人的前列腺特异性抗原(lpsa)水平和八个协变量之间的关系。

这些协变量是:癌症对数体积(lcavol)、前列腺的对数重量(lweight)、年龄(age)、良性前列腺的对数体积(lbph)、精囊侵犯(svi)、胶囊穿透的对数(lcp)、格里森评分(gleason)以及格里森评分4或5的百分比(pgg45)。

在本小节中,我们假设因变量(lpsa)均值为零,而预测因子已被标准化,均值为零。为了说明问题,我们考虑当τ=0.50时,贝叶斯lasso套索RQ(方法="BLqr")。在这种情况下,我们使用以下代码

R> x=as.matrix(x)
R> rq(y~x,tau = 0.5, method="BLqr")

bd2957f7e7f70dccef9c494bd3f8179c.png

模型法可用于确定回归中的活跃变量。 

0d6c393bf97ba61b2db3aac8c31a4981.png

相应的吉布斯采样的收敛性是通过生成样本的路径图和边际后验直方图评估的。因此,图可以用来提供一个关于吉布斯采样器收敛的图形检查,通过使用以下代码检查路径图和边际后验直方图。

plot(fit, type="trace")

上述代码的结果分别显示在图4和图5中。图4中的路径图显示,生成的样本迅速穿越了后验空间,图5中的边际后验直方图显示,条件后验分布实际上是所需的平稳单变量常态。 

edc1352b374a2fdd0cd0f51977f4362c.png

9fe5efb9a3eb6f5b8027f3d75a45f59d.png

小麦数据

我们考虑一个小麦数据集。这个数据集来自于国家小麦种植发展计划(2017)。这个小麦数据由11个变量的584个观测值组成。因变量是每2500平方米小麦产量增加的百分比。协变量是化肥尿素(U)、小麦种子播种日期(Ds)、小麦种子播种量(Qs)、激光平田技术(LT)、复合肥施肥(NPK)、播种机技术(SMT)、绿豆作物种植(SC)、作物除草剂(H)、作物高钾肥(K)、微量元素肥料(ME)。

下面的命令给出了τ=0.50时Tobit RQ的后验分布。

rq(y~x,tau=0.5, methods="Btqr")

8b4222c99e5d106c0010bf39a65af21e.png

还可以拟合贝叶斯lassoTobit 分位数回归和贝叶斯自适应lassoTobit 分位数回归。当τ=0.50时,函数可以用来获得Tobit 分位数回归的后验平均值和95%的置信区间。 

a1f0db6838689cf56d8f5b9a378c57d8.png

结论

在本文中,我们已经说明了在分位数回归(RQ)中进行贝叶斯系数估计和变量选择。此外,本文还实现了带有lasso和自适应lasso惩罚的贝叶斯Tobit 分位数回归。还包括总结结果、绘制路径图、后验直方图、自相关图和绘制定量图的进一步建模。

参考文献

Alhamzawi, R., K. Yu, and D. F. Benoit (2012). Bayesian adaptive lasso quantile regression. Statistical Modelling 12 (3), 279–297.

Brownlee, K. A. (1965). Statistical theory and methodology in science and engineering, Volume 150. Wiley New York.

Davino, C., M. Furno, and D. Vistocco (2013). Quantile regression: theory and applications. John Wiley & Sons.


60d2e0a1b34b4f1ed4d486f9cf0a3deb.jpeg

本文摘选R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析,点击“阅读原文”获取全文完整资料。

2b1c8357899f90614f9c3b848a9ec490.jpeg

04c46eafcf9b9be74628896bac75c2bd.png

点击标题查阅往期内容

R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据

R语言STAN贝叶斯线性回归模型分析气候变化影响北半球海冰范围和可视化检查模型收敛性

R语言贝叶斯MCMC:用rstan建立线性回归模型分析汽车数据和可视化诊断

R语言贝叶斯MCMC:GLM逻辑回归、Rstan线性回归、Metropolis Hastings与Gibbs采样算法实例

R语言贝叶斯Poisson泊松-正态分布模型分析职业足球比赛进球数

R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数

R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病

R语言中贝叶斯网络(BN)、动态贝叶斯网络、线性模型分析错颌畸形数据

R语言中的block Gibbs吉布斯采样贝叶斯多元线性回归

Python贝叶斯回归分析住房负担能力数据集

R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析

Python用PyMC3实现贝叶斯线性回归模型

R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型

R语言Gibbs抽样的贝叶斯简单线性回归仿真分析

R语言和STAN,JAGS:用RSTAN,RJAG建立贝叶斯多元线性回归预测选举数据

R语言基于copula的贝叶斯分层混合模型的诊断准确性研究

R语言贝叶斯线性回归和多元线性回归构建工资预测模型

R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

R语言stan进行基于贝叶斯推断的回归模型

R语言中RStan贝叶斯层次模型分析示例

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化

R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型

WinBUGS对多元随机波动率模型:贝叶斯估计与模型比较

R语言实现MCMC中的Metropolis–Hastings算法与吉布斯采样

R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化

视频:R语言中的Stan概率编程MCMC采样的贝叶斯模型

R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计

e0cd8cfa4bb0e3c8c1462e0d4a124ad1.png

e598d882e401184831b697c14554abc3.jpeg

7a8549faa1512b2740dfd60cc8aa6338.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/78956.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue基础知识十:Vue中组件和插件有什么区别?

一、组件是什么 回顾以前对组件的定义: 组件就是把图形、非图形的各种逻辑均抽象为一个统一的概念(组件)来实现开发的模式,在Vue中每一个.vue文件都可以视为一个组件 组件的优势 降低整个系统的耦合度,在保持接口不…

【洛谷 P1364】医院设置 题解(图论+深度优先搜索)

医院设置 题目描述 设有一棵二叉树,如图: 其中,圈中的数字表示结点中居民的人口。圈边上数字表示结点编号,现在要求在某个结点上建立一个医院,使所有居民所走的路程之和为最小,同时约定,相邻接…

C#,数值计算——64位哈希表的计算方法与实现代码

1 文本格式 using System; namespace Legalsoft.Truffer { public class HashAll { public HashAll() { } /// <summary> /// Pseudo-DES hashing of the 64-bit word(lword, rword). Both 32-bit arguments /// are …

GDB之调试系统接口syscall(九)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

JavaScript 知识扫盲

JavaScript 知识扫盲 写在前面一、JavaScript 写入形式二、常用输入输出三、JS 是动态类型语言四、运算符五、数组1、数组创建2、获取和修改数组元素3、新增元素4、删除元素 六、函数七、对象1、对象的创建2、属性方法的使用 八、JavaScript 和 Java 对比九、事件1、常见事件2、…

Kubernetes(k8s)上搭建nacos集群

Kubernetes上搭建nacos集群 环境准备Kubernetes准备数据库准备 部署nacos集群官方镜像地址创建configmap创建部署文件根据yaml资源清单文件部署nacos 环境准备 Kubernetes准备 你需要准备一个Kubernetes集群&#xff0c;如图我的集群已经准备完毕&#xff1a; 数据库准备 …

【蓝桥杯选拔赛真题60】Scratch旋转风车 少儿编程scratch图形化编程 蓝桥杯选拔赛真题解析

目录 scratch旋转风车 一、题目要求 编程实现 二、案例分析 1、角色分析

【脑机接口论文与代码】 基于自适应FBCCA的脑机接口控制机械臂

Brain-Controlled Robotic Arm Based on Adaptive FBCCA 基于自适应FBCCA的脑机接口控制机械臂论文下载&#xff1a;算法程序下载&#xff1a;摘要1 项目介绍2 方法2.1CCA算法2.2FBCCA 算法2.3自适应FBCCA算法 3数据获取4结果4.1脑地形图4.2频谱图4.3准确率 5结论 基于自适应FB…

Spring底层的核心原理解析

这篇文章大致讲解一下spring的整个执行流程&#xff0c;也就是在我们脑子里面建立一个笼统的概念 spring如何创建一个容器呢 容器里面是对象 上面就是利用AnnotationConfigApplicationContext这个对象&#xff0c;然后传入了一个配置类的字节码对象给我们创建一个Spring容器&am…

Hyper-V 安装 CentOS (二)

总目录 https://preparedata.blog.csdn.net/article/details/132877836 文章目录 总目录一、Hyper-V 创建centos的虚拟机实例二、虚拟机安装Centos ISO镜像三、重启后&#xff0c;进入系统 一、Hyper-V 创建centos的虚拟机实例 网络连接先不选择&#xff0c;后面文章专门配置网…

【软考】系统架构设计师 - 知识扩展 - “区块链技术“

目录 一 简介&#x1f451; 1 比特币❤️ 2 区块链的特点❤️ 3 共识算法❤️ 二 练习题&#x1f451; 三 扩展&#x1f451; 1 哈希算法❤️ 2 哈希指针❤️ 3 UTXO❤️ 4 参考资料❤️ 一 简介&#x1f451; 1 比特币❤️ 比特币底层采用了区块链技术。 比特币交易…

03目标检测-传统方法与深度学习算法对比

目录 一、目标学习的检测方法变迁及对比 二、深度学习目标检测算法基本流程 三、传统目标检测算法VS深度学习目标检测算法 一、目标学习的检测方法变迁及对比 “目标检测“是当前计算机视觉和机器学习领域的研究热点。从Viola-Jones Detector、DPM等冷兵器时代的智…

【数据结构】二叉树的链式结构

【数据结构】二叉树的链式存储结构 二叉树的存储结构 typedef int BTDataType; // 二叉树的结构 typedef struct BinaryTreeNode {BTDataType data; // 树的值struct BinaryTreeNode *left; // 左孩子struct BinaryTreeNode *right;// 右孩子 } BinaryTreeNode;二…

EXCEL如何把一个单元格内的文本和数字分开?例如:龚龚15565 = 龚龚 15565

使用工具&#xff1a;WPS 举例&#xff1a; EXCEL如何把一个单元格内的文本和数字批量分开&#xff1f;不使用数据分列。 第一步、将第二行数据冻结 第二步、在B1、C1单元格输入需要分开的示例 第三步、点击选中B1单元格&#xff0c;输入快捷键【CTRLE】进行填充。B2单元格也是…

【AIGC】图片生成的原理与应用

前言 近两年 AI 发展非常迅速&#xff0c;其中的 AI 绘画也越来越火爆&#xff0c;AI 绘画在很多应用领域有巨大的潜力&#xff0c;AI 甚至能模仿各种著名艺术家的风格进行绘画。 目前比较有名商业化的 AI 绘画软件有 Midjourney、DALLE2、以及百度出品的文心一格&#xff1a;…

MinGW-W64 下载、安装与配置(支持最新版的GCC,目前 GCC 13.2.0)VSCode配置c/c++环境 彻底删除vscode(包括插件及配置!)

目录 一、简介 二、下载 1 旧版安装&#xff08;8.1.0&#xff09; 从 sourceforge.net 下载 2 新版安装(本次采用较新版本~~~) 从 github 下载 从 镜像站点 下载 自己编译 三、安装与配置 1. 在线安装&#xff08;这里仅作参考了解&#xff09; 2. 离线安装&…

异步FIFO设计的仿真与综合技术(3)

概述 本文主体翻译自C. E. Cummings and S. Design, “Simulation and Synthesis Techniques for Asynchronous FIFO Design 一文&#xff0c;添加了笔者的个人理解与注释&#xff0c;文中蓝色部分为笔者注或意译。前文链接&#xff1a; 异步FIFO设计的仿真与综合技术&#xf…

自动化测试(五):自动化测试框架的搭建和基于yaml热加载的测试用例的设计

该部分是对自动化测试专栏前四篇的一个补充&#xff0c;本次参考以下文章实现一个完整的谷歌翻译接口自动化测试:   [1]【python小脚本】Yaml配置文件动态加载   [2]【python做接口测试的学习记录day8——pytest自动化测试框架之热加载和断言封装】 目标&#xff1a;框架封…

新增动态排序图、桑基图、AntV组合图,DataEase开源数据可视化分析平台v1.18.10发布

2023年9月14日&#xff0c;DataEase开源数据可视化分析平台正式发布v1.18.10版本。 这一版本的功能升级包括&#xff1a;数据集方面&#xff0c;对字段管理的后台保存做了相关优化&#xff0c;降低了资源消耗&#xff1b;仪表板方面&#xff0c;对联动、查询结果以及过滤组件等…

系统架构:软件工程速成

文章目录 参考概述软件工程概述软件过程 可行性分析可行性分析概述数据流图数据字典 需求分析需求分析概述ER图状态转换图 参考 软件工程速成(期末考研复试软考)均适用. 支持4K 概述 软件工程概述 定义&#xff1a;采用工程的概念、原理、技术和方法来开发与维护软件。 三…