2013年认证杯SPSSPRO杯数学建模C题(第二阶段)公路运输业对于国内生产总值的影响分析全过程文档及程序

2013年认证杯SPSSPRO杯数学建模

C题 公路运输业对于国内生产总值的影响分析

原题再现:

  交通运输作为国民经济的载体,沟通生产和消费,在经济发展中扮演着极其重要的角色。纵观几百年来交通运输与经济发展的相互关系,生产水平越高,就越要求基础结构超前发展。工业化时期的基础结构,已经不允许交通运输滞后。进入现代化社会,经济社会对交通运输的要求本质上就是超前的,交通运输是国民经济的先行官,发展经济,交通先行,是经济发展的内在规律。公路运输是在公路上运送旅客和货物的运输方式,是交通运输系统的组成部分之一,主要承担中短途客货运输。发展公路运输对国内生产总值(GDP)增长的贡献产生于交通建设和客货运输两个阶段,表现为公路运输对国民经济的直接贡献、波及效果、对于相关行业的直接消费以及创造就业机会等几个方面。
  某省的统计部门想通过调查研究的方法估计公路运输业对于 GDP 的影响,通过随机发放问卷,获得了附件 1 中所示的数据,该数据为真实调查得到的原始数据。请参照该数据完成如下问题:
  第二阶段问题:
  问题 3 附件 3 给出了该省主要城市的公路运输统计数据。请建立合理的数学模型,给出未来五年公路运输投资资金在各市的分配比例。
  问题 4 请根据附件 3 给出的数据,对于问题 1 的结果进行修正,详细陈述修正的理由。

整体求解过程概述(摘要)

  本文研究的是关于公路运输业对于国内生产总值影响的问题,通过分析题目所给的数据建立了无量纲标准化模型、指数平滑的时间序列模型、灰色系统模型、曲线拟合模型、聚类分析模型、效益综合模型、改进加权主成分分析法模型、熵权的属性识别模型、误差修正模型、时间序列的单位根检验模型、协整分析模型,利用 MATLAB 软件和 SPSS软件对上述模型进行逐一求解,分别回答了题目所给的所有问题。
  针对问题三,首先利用 SPSS 软件对原始数据填补缺失值和分析异常值,并用无量纲化处理方法对公路运输指标进行分类和标准化。再用指数平滑的时间序列模型、灰色系统模型、曲线拟合投资值变化趋势法分别预测公路运输投资强度,得到未来 5 年公路投资强度分别为:74.7514、74.6070、72.0358、67.2308 和 60.5528。然后用聚类城市等级量化模型对经济效果影响不同的城市进行投资力度分类(其分类效果详见 9 页),进而利用加权主成分分析法求解出各类城市对该省经济效果的贡献值。最后综合各市投资增长率、公路运输投资强度及其经济效果贡献值用熵权分析法求解出未来 5 年各城市公路建设资金投入的具体比例(详见 14 页)。
  针对问题四,为了结合附件所给的数据将公路运输业对 GDP 的影响模型进行合理的修正,首先通过公路投资与国民经济发展指标的相关分析得到一般性相关关系。其次通过 Engle—Granger 两步法分析公路投资与国民经济发展指标的协整过程得出公路投资与国民经济发展之间形成了长期均衡关系。然后利用 Granger 因果关系检验 Engle—Granger 两步法所得结论得出其模型的正确性和精确度。最后得出公路投资额与国民经济发展指标 GDP 之间有着高度的正相关关系。

问题分析:

  根据这个问题的实际背景和现有的抽检数据,首先依据 2007 年到 2011 年公路运输的统计数据对该省 11 个城市的投资情况进行强度分类,再结合历年公路投资的强度变化作预测分析,利用改进的加权主成分析法模型推算出 11 个城市经济效益综合贡献值。从而结合熵权算法模型求解出未来 5 年该省每个城市公路投资比例;最后结合上述问题分析的公路运输对 GDP 的影响模型,利用相关分析以及循环检验更深入的讨论了公路运输业对 GDP 的影响效益。
  问题 1)通过题目所给附件的信息,结合问题的求解进行了合理的等级分类,利用将原始处理进行缺失值和异常值的处理,再根据分类标准进行数据整合。首先通过历年公路投资强度进行逐步预测分析,从而得到未来 5 年该省公路投资强度的变化情况,再根据前 5 年各城市的投资强度,利用 SPSS 软件进行聚类分析,从而得到重投入、较重投入、轻投入和最小投入所代表性的城市,通过改进后的加权主成分析法模型求解出各城市公路运输对经济效益的综合贡献值。最后结合投入增长率、城市经济贡献值和城市建设强度值,利用熵权分析模型求解出未来 5 年各城市公路建设资金投入的具体比例,
  问题 2) 通过对上述公路运输对 GDP 影响模型的分析,结合附件 3 中 2007 年到2011 年公路运输统计的数据进行模型修正。首先结合公路投资强度值和 GDP 的相关数据初步分析出公路运输投资与 GDP 的相关性,再通过公路投资与国民经济协整关系分析及误差修正模型、公路投资额与 GDP 时间序列的单位根检验、公路投资额与 GDP 的协整分析和公路投资额与 GDP 的协整分析一系列步骤深入的分析公路运输对 GDP 的影响,最后结合检验环节更好的证明了上述分析的正确性。

模型假设:

  1.假设本文附件中的缺失值和异常值是由于工作人员的忽视而造成了,而通过处理后的异常和缺失数据与原始数据差异性不大。
  2.假设该省每个城市公路建设投资的强度与城市公路经济贡献效益成正相关。
  3.假设将该省 11 个城市公路投资的强度划分为最低投入、低投入、较高投入和高投入四各等级进行分析。
  4.假设该省公路投资金额用公路投资强度来确定,其中公路里程增加的值与单位面积公路建设资金相乘表示公路投资强度。
  5.假设未来 5 年该省各城市公路投资总强度由 11 个城市公路效益经济综合值、城市建设权重和未来 5 年该省公路投资变化率来决定。

论文缩略图:

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

1. 
x=[0:1:4];
y=[1.654277124 1.728771002 1.776948578 1.839460144 1.859779993];
y1=1.631022+0.175439*x;
plot(x,y,'--',x,y1,'-*');
title('¹预测曲线');
xlabel('时间');
ylabel('预测值');
grid on;
2. 
B=[-287.0063459 1
-515.6540044 1
-773.3170607 1
-1055.69827 1];
B1=[-287.0063459 -515.6540044 -773.3170607 -1055.69827
1 1 1 1];
Y=[54.5320405
59.79178874
69.03973939
72.15086514];
q=inv(B1*B)*B1*Y
3.曲线方程
x=[0:1:4];
y=[44.48556623 54.5320405 59.79178874 69.03973939 72.15086514];
y1=2037.407*(exp(0.0241*x)-exp(0.0241*(x-1)));
plot(x,y,'--',x,y1,'-*');
title('预测曲线图');
xlabel('时间');
ylabel('预测值');
grid on;
4.
x=[0:1:4];
y=[44.48556623 54.5320405 59.79178874 69.03973939 72.15086514];
cftool
5.
x=[0:1:4];
y=[44.48556623 54.5320405 59.79178874 69.03973939 72.15086514];
y3=2.064e+005*exp(-0.07529*x) -2.063e+005*exp(-0.07536 *x);
plot(x,y,'--',x,y3,'-o');
grid on;
5.
x=[0:1:4];
y=[44.48556623 54.5320405 59.79178874 69.03973939 72.15086514];y2=42.29 + 2.449 *cos(x*0.2749) + 32.61*sin(x*0.2749);
plot(x,y,'--',x,y2,'-o');
grid on;
6.
x=[0:1:9];
y7=42.29 + 2.449 *cos(x*0.2749) + 32.61*sin(x*0.2749);
y7
1.
x1=[0.455544275 0.541542453 0.595533854 0.682681875 0.724812977 ];
x2=[0.415468779 0.583256115 0.581482314 0.697288343 0.797434953 ];
x3=[0.489219269 0.515736684 0.583646355 0.661576338 0.749965397];
x4=[0.416962175 0.495571922 0.589116229 0.697595173 0.875468267];
y=[44.48557 54.53204 59.79179 69.03974 72.15087];
X=[ones(length(y),1),x1',x2',x3',x4'];
Y=y';
[b,bint,r,rint,stats]=regress(Y,X);
b,bint,r,rint,stats
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/789444.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LangSmith

文章目录 关于 LangSmith创建 API Key 基本代码使用查看控制台 关于 LangSmith 主页:https://www.langchain.com/langsmith文档:https://docs.smith.langchain.com/LangSmith Walkthrough : https://python.langchain.com/docs/langsmith/wa…

用于自动驾驶,无人驾驶领域的IMU六轴陀螺仪传感器:M-G370

用于自动驾驶,无人驾驶的IMU惯导模块六轴陀螺仪传感器:M-G370。自2020年,自动驾驶,无人驾驶已经迎来新突破,自动驾驶汽车作为道路交通体系的一员,要能做到的就是先判断周边是否有障碍物,自身的行驶是否会对其他交通参与成员产生危…

YOLOV5 改进:更换主干网络为Resnet

1、前言 之前实现了yolov5更换主干网络为MobileNet和vgg网络 本章将继续将yolov5代码进行更改,通过引用官方实现的resnet网络,替换原有的yolov5主干网络 替换的效果如下: 2、resnet 网络结构 测试的代码为官方的resnet34 通过summary 打印的resnet网络结构如下 =======…

京东商品信息采集API商品详情图主图价格抓取接口(测试入口如下)

京东商品信息采集API通常用于抓取京东平台上的商品信息,包括商品详情图、主图、价格等。这样的API通常由专业的数据服务提供商提供,并且需要遵循京东的开放平台政策和相关法规。 请求示例,API接口接入Anzexi58 关于你提到的“测试入口”&…

[蓝桥杯练习]蓝桥王国

单源最短路径问题-dj #include<bits/stdc.h> #define ll long long using namespace std; const int N3e55,M1e65; const ll INF0x7f7f7f7f7f7f7f;//7个7f没问题,INF < INFx struct edge{int to;ll w;edge(int end,ll cost){toend;wcost;} }; struct node{int id;l…

Flutter应用混淆技术原理与实践

在移动应用开发中&#xff0c;保护应用代码安全至关重要。Flutter 提供了简单易用的混淆工具&#xff0c;帮助开发者在构建 release 版本应用时有效保护代码。本文将介绍如何在 Flutter 应用中使用混淆&#xff0c;并提供了相关的操作步骤和注意事项。 &#x1f4dd; 摘要 本…

pycharm复习

目录 1.基础语法 2.判断语句 3.while循环 4.函数 5.数据容器 1.基础语法 1.字面量 2.注释&#xff1a; 单行注释# 多行注释" " " " " " 3.变量&#xff1a; 变量名 变量值 print&#xff1a;输出多个结果&#x…

JVM 记录

记录 工具 https://gceasy.io 资料 尚硅谷宋红康JVM全套教程&#xff08;详解java虚拟机&#xff09; https://www.bilibili.com/video/BV1PJ411n7xZ?p361 全套课程分为《内存与垃圾回收篇》《字节码与类的加载篇》《性能监控与调优篇》三个篇章。 上篇《内存与垃圾回收篇…

JavaScript 对象管家 Proxy

JavaScript 在 ES6 中&#xff0c;引入了一个新的对象类型 Proxy&#xff0c;它可以用来代理另一个对象&#xff0c;并可以在代理过程中拦截、覆盖和定制对象的操作。Proxy 对象封装另一个对象并充当中间人&#xff0c;其提供了一个捕捉器函数&#xff0c;可以在代理对象上拦截…

基于Zabbix 5.0 实现windows服务器上应用程序和主机端口的状态监控

基于Zabbix 5.0 实现windows服务器上应用程序和主机端口的状态监控 背景 用python开发的应用程序在服务器上运行,有时候会出现程序自动退出却收不到告警的情况 环境 zabbix服务器:Centos7 64位 Windows服务器: Windows 10 64位 软件 zabbix_server:zabbix5.0 zabbix_…

680.验证回文串II-力扣

680.验证回文串II-力扣 给你一个字符串 s&#xff0c;最多可以从中删除一个字符。 请你判断 s 是否能成为回文字符串&#xff1a;如果能&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false。 示例1&#xff1a; 输入&#xff1a;s “aba” 输出&#xff1a;true示…

如何制作一个微信小程序商城?

在这个数字化飞速发展的时代&#xff0c;微信小程序商城以其独特的便捷性和高效的用户连接能力&#xff0c;成为了电商领域的一颗新星。对于那些渴望在微信平台上开展业务的商家和企业来说&#xff0c;微信小程序商城不仅是一种新的尝试&#xff0c;更是一个充满无限可能的商机…

2024年文化传播、交流与考古学国际会议 (CCEA 2024)

2024年文化传播、交流与考古学国际会议 (CCEA 2024) 2024 International Conference on Cultural Communication, Exchange, and Archaeology 【会议简介】 2024年文化传播、交流与考古学国际会议即将在千年古都西安盛大召开。本次会议将汇聚全球文化、传播、考古等领域的专家…

每日一题(leetcode2952):添加硬币最小数量 初识贪心算法

这道题如果整体去思考&#xff0c;情况会比较复杂。因此我们考虑使用贪心算法。 1 我们可以假定一个X&#xff0c;认为[1,X-1]区间的金额都可以取到&#xff0c;不断去扩张X直到大于target。&#xff08;这里为什么要用[1,X-1]而不是[1,X],总的来说是方便&#xff0c;潜在思想…

浏览器工作原理与实践--async/await:使用同步的方式去写异步代码

在上篇文章中&#xff0c;我们介绍了怎么使用Promise来实现回调操作&#xff0c;使用Promise能很好地解决回调地狱的问题&#xff0c;但是这种方式充满了Promise的then()方法&#xff0c;如果处理流程比较复杂的话&#xff0c;那么整段代码将充斥着then&#xff0c;语义化不明显…

使用Bitmaps位图实现Redis签到

系列文章目录 文章目录 系列文章目录前言前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 Redis提供了Bitmaps这个“数据类型”可以实现对位的操作: (1) Bitmaps…

基于Weibull、Beta、Normal分布的风、光、负荷场景生成及K-means场景削减方法

目录 一、主要内容&#xff1a; 二、代码运行效果&#xff1a; 三、Weibull分布与风机风速&#xff1a; 四、Beta分布与光伏辐照度&#xff1a; 五、Normal分布与电负荷&#xff1a; 六、K-means聚类算法&#xff1a; 七、完整代码数据下载&#xff1a; 一、主要内容&am…

【数论】莫比乌斯反演(欧拉反演)进阶-杜教筛

文章目录 前言 回忆 题集12 杜教筛例题 前言 这里需要对莫反有一些基础。 不会的可以点这里 回忆 f ( n ) ∑ d ∣ n g ( d ) → g ( n ) ∑ d ∣ n f ( d ) μ ( n d ) f(n)\sum_{d|n}g(d)\rightarrow g(n)\sum_{d|n}f(d)\mu(\frac{n}{d}) f(n)∑d∣n​g(d)→g(n)∑d∣n​…

Windows如何优雅的运行ROS2/linux

Windows如何优雅的运行ROS2/linux 前言 在ROS/ROS2开发过程中&#xff0c;大家普遍使用到的分布式开发方法都是基于虚拟机/双系统进行&#xff0c;本质上是希望基于Ubuntu良好的生态环境进行&#xff0c;但是两种方式各有各自的好处&#xff0c;也有各自的弊端&#xff0c;例…

docker 部署 nali 开源 IP 地理信息归属查询软件

前言 早前用到一个小巧开源的 IP 归属地查询软件&#xff0c;官方提供了 Dockerfile&#xff0c;使用了一段时间觉得还不错&#xff0c;非常简单便捷。 部署 docker 启动 由于该项目会在首次启动自动下载 IP 数据库,所以最好通过挂载目录的方式,将数据库目录挂在到本地,避免…