Mysql实战--为什么表数据删掉一半,表文件大小不变

经常会有同学来问我,我的数据库占用空间太大,我把一个最大的表删掉了一半的数据,怎么表文件的大小还是没变?

那么今天,我就和你聊聊数据库表的空间回收,看看如何解决这个问题。

这里,我们还是针对MySQL中应用最广泛的InnoDB引擎展开讨论。一个InnoDB表包含两部分,即:表结构定义和数据。在MySQL 8.0版本以前,表结构是存在以.frm为后缀的文件里。而MySQL 8.0版本,则已经允许把表结构定义放在系统数据表中了。因为表结构定义占用的空间很小,所以我们今天主要讨论的是表数据。

接下来,我会先和你说明为什么简单地删除表数据达不到表空间回收的效果,然后再和你介绍正确回收空间的方法。

参数innodb_file_per_table

表数据既可以存在共享表空间里,也可以是单独的文件。这个行为是由参数innodb_file_per_table控制的:

  1. 这个参数设置为OFF表示的是,表的数据放在系统共享表空间,也就是跟数据字典放在一起;

  1. 这个参数设置为ON表示的是,每个InnoDB表数据存储在一个以 .ibd为后缀的文件中。

从MySQL 5.6.6版本开始,它的默认值就是ON了。

我建议你不论使用MySQL的哪个版本,都将这个值设置为ON。因为,一个表单独存储为一个文件更容易管理,而且在你不需要这个表的时候,通过drop table命令,系统就会直接删除这个文件。而如果是放在共享表空间中,即使表删掉了,空间也是不会回收的。

所以,将innodb_file_per_table设置为ON,是推荐做法,我们接下来的讨论都是基于这个设置展开的。

我们在删除整个表的时候,可以使用drop table命令回收表空间。但是,我们遇到的更多的删除数据的场景是删除某些行,这时就遇到了我们文章开头的问题:表中的数据被删除了,但是表空间却没有被回收。

我们要彻底搞明白这个问题的话,就要从数据删除流程说起了。

数据删除流程

我们先再来看一下InnoDB中一个索引的示意图。在前面文章中,我和你介绍索引时曾经提到过,InnoDB里的数据都是用B+树的结构组织的。

图1 B+树索引示意图

假设,我们要删掉R4这个记录,InnoDB引擎只会把R4这个记录标记为删除。如果之后要再插入一个ID在300和600之间的记录时,可能会复用这个位置。但是,磁盘文件的大小并不会缩小。

现在,你已经知道了InnoDB的数据是按页存储的,那么如果我们删掉了一个数据页上的所有记录,会怎么样?

答案是,整个数据页就可以被复用了。

但是,数据页的复用跟记录的复用是不同的。

记录的复用,只限于符合范围条件的数据。比如上面的这个例子,R4这条记录被删除后,如果插入一个ID是400的行,可以直接复用这个空间。但如果插入的是一个ID是800的行,就不能复用这个位置了。

而当整个页从B+树里面摘掉以后,可以复用到任何位置。以图1为例,如果将数据页page A上的所有记录删除以后,page A会被标记为可复用。这时候如果要插入一条ID=50的记录需要使用新页的时候,page A是可以被复用的。

如果相邻的两个数据页利用率都很小,系统就会把这两个页上的数据合到其中一个页上,另外一个数据页就被标记为可复用。

进一步地,如果我们用delete命令把整个表的数据删除呢?结果就是,所有的数据页都会被标记为可复用。但是磁盘上,文件不会变小。

你现在知道了,delete命令其实只是把记录的位置,或者数据页标记为了“可复用”,但磁盘文件的大小是不会变的。也就是说,通过delete命令是不能回收表空间的。这些可以复用,而没有被使用的空间,看起来就像是“空洞”。

实际上,不止是删除数据会造成空洞,插入数据也会。

如果数据是按照索引递增顺序插入的,那么索引是紧凑的。但如果数据是随机插入的,就可能造成索引的数据页分裂。

假设图1中page A已经满了,这时我要再插入一行数据,会怎样呢?

图2 插入数据导致页分裂

可以看到,由于page A满了,再插入一个ID是550的数据时,就不得不再申请一个新的页面page B来保存数据了。页分裂完成后,page A的末尾就留下了空洞(注意:实际上,可能不止1个记录的位置是空洞)。

另外,更新索引上的值,可以理解为删除一个旧的值,再插入一个新值。不难理解,这也是会造成空洞的。

也就是说,经过大量增删改的表,都是可能是存在空洞的。所以,如果能够把这些空洞去掉,就能达到收缩表空间的目的。

而重建表,就可以达到这样的目的。

重建表

试想一下,如果你现在有一个表A,需要做空间收缩,为了把表中存在的空洞去掉,你可以怎么做呢?

你可以新建一个与表A结构相同的表B,然后按照主键ID递增的顺序,把数据一行一行地从表A里读出来再插入到表B中。

由于表B是新建的表,所以表A主键索引上的空洞,在表B中就都不存在了。显然地,表B的主键索引更紧凑,数据页的利用率也更高。如果我们把表B作为临时表,数据从表A导入表B的操作完成后,用表B替换A,从效果上看,就起到了收缩表A空间的作用。

这里,你可以使用alter table A engine=InnoDB命令来重建表。在MySQL 5.5版本之前,这个命令的执行流程跟我们前面描述的差不多,区别只是这个临时表B不需要你自己创建,MySQL会自动完成转存数据、交换表名、删除旧表的操作。

图3 改锁表DDL

显然,花时间最多的步骤是往临时表插入数据的过程,如果在这个过程中,有新的数据要写入到表A的话,就会造成数据丢失。因此,在整个DDL过程中,表A中不能有更新。也就是说,这个DDL不是Online的。

而在MySQL 5.6版本开始引入的Online DDL,对这个操作流程做了优化。

我给你简单描述一下引入了Online DDL之后,重建表的流程:

  1. 建立一个临时文件,扫描表A主键的所有数据页;

  1. 用数据页中表A的记录生成B+树,存储到临时文件中;

  1. 生成临时文件的过程中,将所有对A的操作记录在一个日志文件(row log)中,对应的是图中state2的状态;

  1. 临时文件生成后,将日志文件中的操作应用到临时文件,得到一个逻辑数据上与表A相同的数据文件,对应的就是图中state3的状态;

  1. 用临时文件替换表A的数据文件。

图4 Online DDL

可以看到,与图3过程的不同之处在于,由于日志文件记录和重放操作这个功能的存在,这个方案在重建表的过程中,允许对表A做增删改操作。这也就是Online DDL名字的来源。

我记得有同学在第6篇讲表锁的文章的评论区留言说,DDL之前是要拿MDL写锁的,这样还能叫Online DDL吗?

确实,图4的流程中,alter语句在启动的时候需要获取MDL写锁,但是这个写锁在真正拷贝数据之前就退化成读锁了。

为什么要退化呢?为了实现Online,MDL读锁不会阻塞增删改操作。

那为什么不干脆直接解锁呢?为了保护自己,禁止其他线程对这个表同时做DDL。

而对于一个大表来说,Online DDL最耗时的过程就是拷贝数据到临时表的过程,这个步骤的执行期间可以接受增删改操作。所以,相对于整个DDL过程来说,锁的时间非常短。对业务来说,就可以认为是Online的。

需要补充说明的是,上述的这些重建方法都会扫描原表数据和构建临时文件。对于很大的表来说,这个操作是很消耗IO和CPU资源的。因此,如果是线上服务,你要很小心地控制操作时间。如果想要比较安全的操作的话,我推荐你使用GitHub开源的gh-ost来做。

Online 和 inplace

说到Online,我还要再和你澄清一下它和另一个跟DDL有关的、容易混淆的概念inplace的区别。

你可能注意到了,在图3中,我们把表A中的数据导出来的存放位置叫作tmp_table。这是一个临时表,是在server层创建的。

在图4中,根据表A重建出来的数据是放在“tmp_file”里的,这个临时文件是InnoDB在内部创建出来的。整个DDL过程都在InnoDB内部完成。对于server层来说,没有把数据挪动到临时表,是一个“原地”操作,这就是“inplace”名称的来源。

所以,我现在问你,如果你有一个1TB的表,现在磁盘间是1.2TB,能不能做一个inplace的DDL呢?

答案是不能。因为,tmp_file也是要占用临时空间的。

我们重建表的这个语句alter table t engine=InnoDB,其实隐含的意思是:

alter table t engine=innodb,ALGORITHM=inplace;

跟inplace对应的就是拷贝表的方式了,用法是:

alter table t engine=innodb,ALGORITHM=copy;

当你使用ALGORITHM=copy的时候,表示的是强制拷贝表,对应的流程就是图3的操作过程。

但我这样说你可能会觉得,inplace跟Online是不是就是一个意思?

其实不是的,只是在重建表这个逻辑中刚好是这样而已。

比如,如果我要给InnoDB表的一个字段加全文索引,写法是:

alter table t add FULLTEXT(field_name);

这个过程是inplace的,但会阻塞增删改操作,是非Online的。

如果说这两个逻辑之间的关系是什么的话,可以概括为:

  1. DDL过程如果是Online的,就一定是inplace的;

  1. 反过来未必,也就是说inplace的DDL,有可能不是Online的。截止到MySQL 8.0,添加全文索引(FULLTEXT index)和空间索引(SPATIAL index)就属于这种情况。

最后,我们再延伸一下。

在第10篇文章《MySQL为什么有时候会选错索引》的评论区中,有同学问到使用optimize table、analyze table和alter table这三种方式重建表的区别。这里,我顺便再简单和你解释一下。

  • 从MySQL 5.6版本开始,alter table t engine = InnoDB(也就是recreate)默认的就是上面图4的流程了;

  • analyze table t 其实不是重建表,只是对表的索引信息做重新统计,没有修改数据,这个过程中加了MDL读锁;

  • optimize table t 等于recreate+analyze。

小结

今天这篇文章,我和你讨论了数据库中收缩表空间的方法。

现在你已经知道了,如果要收缩一个表,只是delete掉表里面不用的数据的话,表文件的大小是不会变的,你还要通过alter table命令重建表,才能达到表文件变小的目的。我跟你介绍了重建表的两种实现方式,Online DDL的方式是可以考虑在业务低峰期使用的,而MySQL 5.5及之前的版本,这个命令是会阻塞DML的,这个你需要特别小心。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/787305.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云容器引擎CCE弹性伸缩

CCE弹性伸缩介绍 CCE的弹性伸缩能力分为如下两个维度: 工作负载弹性伸缩:即调度层弹性,主要是负责修改负载的调度容量变化。例如,HPA是典型的调度层弹性组件,通过HPA可以调整应用的副本数,调整的副本数会…

数据结构进阶篇 之 【堆的应用】(堆排序,TOP-K问题)详细讲解

所有人都关心我飞的高不高,只有我妈关心我翅膀硬不硬 一、堆的应用 1. 堆排序 1.1 建堆 1.2 利用堆删除思想来进行排序 2.TOP-K问题 二、完结撒❀ –❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀-正文开始-❀–❀–❀–❀–❀–❀–❀–❀–…

如何快速有效地压缩图片大小?这款在线工具可保证图片质量

当你需要上传或发送大量图片时,大体积的图片文件往往会让我们感到困扰,如何快速有效的压缩图片大小成了比较关键的问题,在图片压缩时,我们还需要担心的就是会不会对图片质量有损害,想要做到图片无损压缩就需要用到一些…

go和Java该如何选择?

今天,每个企业都需要一个软件应用程序,从初创公司到大型公司如果你想以最有效的方式运行业务,你必须把它列在网上。竞争并没有就此结束 但重要的是您能够以多简单、多快速的方式创建软件应用程序-这是引领竞争的正确方式。 选择最适合您的软…

MegaSeg Pro for Mac v6.3.1 注册激活版 音视频DJ混音工具

MegaSeg Pro for Mac是一款专业的DJ和广播自动化软件,旨在为音乐专业人士提供强大的音乐播放和演播功能。这款软件具有多种功能,包括强大的音乐库管理,支持导入和组织大量音乐文件,可以轻松管理你的音乐收藏。它支持广泛的音频格式…

WPF学习笔记-FlowDocument流文档基础知识和基本操作

文章目录 概述一、块元素和内联元素1.1 块元素(Block类)1.2 内联元素(Inline类)二、Paragraph元素2.1 基本属性设置2.2 将内联元素Inline添加到Inlines中2.3 设置中西文字体不一样 三、Table元素3.1 添加新的Table3.2 添加列3.3 添…

深度学习系列-python实现-初步学习构建神经网络

深度学习系列-python实现-初步学习构建神经网络 前言1.在Keras中加载MNIST数据集2.构建简单的神经网络模型3.训练模型4.模型的预测和评估5.总结 前言 在数字时代,数据已经成为了一种无处不在的资源。从商业分析到科学研究,从人工智能到机器学习&#xf…

固态硬盘一年不通电数据就没了吗?丢失了怎么办

随着数字化时代的到来,数据的安全性和持久性变得尤为重要。作为现代电子设备中常见的存储设备,固态硬盘(SSD)以其高效、快速的特点受到广大用户的青睐。然而,有关固态硬盘长时间不通电后数据会丢失的担忧也时常困扰着用…

报错:AttributeError: module ‘numpy‘ has no attribute ‘unit8‘解决

错误问题: 解决方法: 哥们姐们仔细一点吧这个unit8是打错了,无非就是uint8写成了unit8 应该是【uint8】,以后敲代码仔细点哦

从零开始学数据分析之数据分析概述

当今世界对信息技术的依赖程度在不断加深,每天都会有大量的数据产生,我们经常会感到数据越来越多,但是要从中发现有价值的信息却越来越难。 这里所说的信息,可以理解为对数据集处理之后的结果,是从数据集中提炼出的可用…

【Leetcode】top 100 二分查找

35 搜索插入位置 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。请必须使用时间复杂度为 O(log n) 的算法。 基础写法!!!牢记…

清华学霸引爆“长文本”大战,大模型的应用前景清晰了吗?

文 | 智能相对论 作者 | 沈浪 Long-LLM(长文本大模型)时代似乎来得有些突然,而引爆这场热潮的,竟是一家由清华学霸牵头的本土AI初创企业。 前不久,月之暗面(Moonshot AI)公司宣布旗下对话式 …

linux 环境安装配置

安装java17 1.下载安装包 wget https://download.oracle.com/java/17/latest/jdk-17_linux-x64_bin.tar.gz 2.解压到自定义目录/usr/local/java mkdir /usr/local/java tar zxvf jdk-17_linux-x64_bin.tar.gz -C /usr/local/java 3.配置环境变量 echo export PATH$PATH:/…

金三银四面试题(十):Java基础问题(1)

这部分面试题多用于面试的热身运动,对很多找实习和准备毕业找工作的小伙伴至关重要。 访问修饰符 在 Java 中,提供了四种访问权限控制: public private protected 以及什么都不写(default) 修饰符当前类同包子包其他…

SSM学习——Spring AOP与AspectJ

Spring AOP与AspectJ 概念 AOP的全称为Aspect-Oriented Programming,即面向切面编程。 想象你是汉堡店的厨师,每一份汉堡都有好几层,这每一层都可以视作一个切面。现在有一位顾客想要品尝到不同风味肉馅的汉堡,如果按照传统的方…

【java】关于String、StringBuffer和StringBuilder的那些事

在之前的文章中我们曾简单介绍过String这个引用类型变量,其实它还有许多特性,还有StringBuffer和StringBuilder这两个方法在字符串操作中也有非常重要的地位,接下来就由小编带大家梳理一下吧👊 目录 一、String 1、构造方法 2、…

独立开发者用微信小程序赚钱

微信小程序能实现赚钱,赚多赚少的问题。 本人就上线了一款小程序 ,集结者assemble ,现在上了广告了,收益不是很多,但胜在持续,税后收入,也还在持续推广中。 开发小程序赚大钱得找到变现模式&a…

0基础学习Mybatis系列数据库操作框架——目录结构

大纲 配置的修改代码的修改Main.java文件所在包下新增org.example.model包新增org.example.mapper包 单元测试 在《0基础学习Mybatis系列数据库操作框架——最小Demo》一文中,我们用最简单的方法组织出一个Mybatis应用项目。为了后续构建更符合日常开发环境的项目&a…

归并排序和分治

归并排序 归并排序是利用归并的思想实现的排序方法,该算法采用经典的分治策略(分治法将问题分成一些小的问题然后递归求解,而治的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。 分而治之 可以看到这种结构…

书生浦语全链条开源开放体系

开放了高质量语料数据 预训练 微调 评测 评测框架 部署 智能体 例如把openlab对于计算机视觉的封装